Step |
Hyp |
Ref |
Expression |
1 |
|
sxbrsiga.0 |
|- J = ( topGen ` ran (,) ) |
2 |
|
dya2ioc.1 |
|- I = ( x e. ZZ , n e. ZZ |-> ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) |
3 |
|
dya2ioc.2 |
|- R = ( u e. ran I , v e. ran I |-> ( u X. v ) ) |
4 |
|
unissb |
|- ( U. ran R C_ ( RR X. RR ) <-> A. d e. ran R d C_ ( RR X. RR ) ) |
5 |
|
vex |
|- u e. _V |
6 |
|
vex |
|- v e. _V |
7 |
5 6
|
xpex |
|- ( u X. v ) e. _V |
8 |
3 7
|
elrnmpo |
|- ( d e. ran R <-> E. u e. ran I E. v e. ran I d = ( u X. v ) ) |
9 |
|
simpr |
|- ( ( ( u e. ran I /\ v e. ran I ) /\ d = ( u X. v ) ) -> d = ( u X. v ) ) |
10 |
|
pwssb |
|- ( ran I C_ ~P RR <-> A. d e. ran I d C_ RR ) |
11 |
|
ovex |
|- ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) e. _V |
12 |
2 11
|
elrnmpo |
|- ( d e. ran I <-> E. x e. ZZ E. n e. ZZ d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) |
13 |
|
simpr |
|- ( ( ( x e. ZZ /\ n e. ZZ ) /\ d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) -> d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) |
14 |
|
simpll |
|- ( ( ( x e. ZZ /\ n e. ZZ ) /\ d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) -> x e. ZZ ) |
15 |
14
|
zred |
|- ( ( ( x e. ZZ /\ n e. ZZ ) /\ d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) -> x e. RR ) |
16 |
|
2re |
|- 2 e. RR |
17 |
16
|
a1i |
|- ( ( ( x e. ZZ /\ n e. ZZ ) /\ d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) -> 2 e. RR ) |
18 |
|
2ne0 |
|- 2 =/= 0 |
19 |
18
|
a1i |
|- ( ( ( x e. ZZ /\ n e. ZZ ) /\ d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) -> 2 =/= 0 ) |
20 |
|
simplr |
|- ( ( ( x e. ZZ /\ n e. ZZ ) /\ d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) -> n e. ZZ ) |
21 |
17 19 20
|
reexpclzd |
|- ( ( ( x e. ZZ /\ n e. ZZ ) /\ d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) -> ( 2 ^ n ) e. RR ) |
22 |
|
2cnd |
|- ( ( ( x e. ZZ /\ n e. ZZ ) /\ d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) -> 2 e. CC ) |
23 |
22 19 20
|
expne0d |
|- ( ( ( x e. ZZ /\ n e. ZZ ) /\ d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) -> ( 2 ^ n ) =/= 0 ) |
24 |
15 21 23
|
redivcld |
|- ( ( ( x e. ZZ /\ n e. ZZ ) /\ d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) -> ( x / ( 2 ^ n ) ) e. RR ) |
25 |
|
1red |
|- ( ( ( x e. ZZ /\ n e. ZZ ) /\ d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) -> 1 e. RR ) |
26 |
15 25
|
readdcld |
|- ( ( ( x e. ZZ /\ n e. ZZ ) /\ d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) -> ( x + 1 ) e. RR ) |
27 |
26 21 23
|
redivcld |
|- ( ( ( x e. ZZ /\ n e. ZZ ) /\ d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) -> ( ( x + 1 ) / ( 2 ^ n ) ) e. RR ) |
28 |
27
|
rexrd |
|- ( ( ( x e. ZZ /\ n e. ZZ ) /\ d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) -> ( ( x + 1 ) / ( 2 ^ n ) ) e. RR* ) |
29 |
|
icossre |
|- ( ( ( x / ( 2 ^ n ) ) e. RR /\ ( ( x + 1 ) / ( 2 ^ n ) ) e. RR* ) -> ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) C_ RR ) |
30 |
24 28 29
|
syl2anc |
|- ( ( ( x e. ZZ /\ n e. ZZ ) /\ d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) -> ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) C_ RR ) |
31 |
13 30
|
eqsstrd |
|- ( ( ( x e. ZZ /\ n e. ZZ ) /\ d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) -> d C_ RR ) |
32 |
31
|
ex |
|- ( ( x e. ZZ /\ n e. ZZ ) -> ( d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) -> d C_ RR ) ) |
33 |
32
|
rexlimivv |
|- ( E. x e. ZZ E. n e. ZZ d = ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) -> d C_ RR ) |
34 |
12 33
|
sylbi |
|- ( d e. ran I -> d C_ RR ) |
35 |
10 34
|
mprgbir |
|- ran I C_ ~P RR |
36 |
35
|
sseli |
|- ( u e. ran I -> u e. ~P RR ) |
37 |
36
|
elpwid |
|- ( u e. ran I -> u C_ RR ) |
38 |
35
|
sseli |
|- ( v e. ran I -> v e. ~P RR ) |
39 |
38
|
elpwid |
|- ( v e. ran I -> v C_ RR ) |
40 |
|
xpss12 |
|- ( ( u C_ RR /\ v C_ RR ) -> ( u X. v ) C_ ( RR X. RR ) ) |
41 |
37 39 40
|
syl2an |
|- ( ( u e. ran I /\ v e. ran I ) -> ( u X. v ) C_ ( RR X. RR ) ) |
42 |
41
|
adantr |
|- ( ( ( u e. ran I /\ v e. ran I ) /\ d = ( u X. v ) ) -> ( u X. v ) C_ ( RR X. RR ) ) |
43 |
9 42
|
eqsstrd |
|- ( ( ( u e. ran I /\ v e. ran I ) /\ d = ( u X. v ) ) -> d C_ ( RR X. RR ) ) |
44 |
43
|
ex |
|- ( ( u e. ran I /\ v e. ran I ) -> ( d = ( u X. v ) -> d C_ ( RR X. RR ) ) ) |
45 |
44
|
rexlimivv |
|- ( E. u e. ran I E. v e. ran I d = ( u X. v ) -> d C_ ( RR X. RR ) ) |
46 |
8 45
|
sylbi |
|- ( d e. ran R -> d C_ ( RR X. RR ) ) |
47 |
4 46
|
mprgbir |
|- U. ran R C_ ( RR X. RR ) |
48 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
49 |
1 48
|
eqeltri |
|- J e. Top |
50 |
49 49
|
txtopi |
|- ( J tX J ) e. Top |
51 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
52 |
1
|
unieqi |
|- U. J = U. ( topGen ` ran (,) ) |
53 |
51 52
|
eqtr4i |
|- RR = U. J |
54 |
49 49 53 53
|
txunii |
|- ( RR X. RR ) = U. ( J tX J ) |
55 |
54
|
topopn |
|- ( ( J tX J ) e. Top -> ( RR X. RR ) e. ( J tX J ) ) |
56 |
1 2 3
|
dya2iocuni |
|- ( ( RR X. RR ) e. ( J tX J ) -> E. c e. ~P ran R U. c = ( RR X. RR ) ) |
57 |
50 55 56
|
mp2b |
|- E. c e. ~P ran R U. c = ( RR X. RR ) |
58 |
|
simpr |
|- ( ( c e. ~P ran R /\ U. c = ( RR X. RR ) ) -> U. c = ( RR X. RR ) ) |
59 |
|
elpwi |
|- ( c e. ~P ran R -> c C_ ran R ) |
60 |
59
|
adantr |
|- ( ( c e. ~P ran R /\ U. c = ( RR X. RR ) ) -> c C_ ran R ) |
61 |
60
|
unissd |
|- ( ( c e. ~P ran R /\ U. c = ( RR X. RR ) ) -> U. c C_ U. ran R ) |
62 |
58 61
|
eqsstrrd |
|- ( ( c e. ~P ran R /\ U. c = ( RR X. RR ) ) -> ( RR X. RR ) C_ U. ran R ) |
63 |
62
|
rexlimiva |
|- ( E. c e. ~P ran R U. c = ( RR X. RR ) -> ( RR X. RR ) C_ U. ran R ) |
64 |
57 63
|
ax-mp |
|- ( RR X. RR ) C_ U. ran R |
65 |
47 64
|
eqssi |
|- U. ran R = ( RR X. RR ) |