Step |
Hyp |
Ref |
Expression |
1 |
|
sxbrsiga.0 |
|- J = ( topGen ` ran (,) ) |
2 |
|
dya2ioc.1 |
|- I = ( x e. ZZ , n e. ZZ |-> ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) |
3 |
|
dya2ioc.2 |
|- R = ( u e. ran I , v e. ran I |-> ( u X. v ) ) |
4 |
1 2 3
|
dya2iocucvr |
|- U. ran R = ( RR X. RR ) |
5 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
6 |
1 5
|
eqeltri |
|- J e. Top |
7 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
8 |
1
|
unieqi |
|- U. J = U. ( topGen ` ran (,) ) |
9 |
7 8
|
eqtr4i |
|- RR = U. J |
10 |
6 6 9 9
|
txunii |
|- ( RR X. RR ) = U. ( J tX J ) |
11 |
4 10
|
eqtr2i |
|- U. ( J tX J ) = U. ran R |
12 |
1 2 3
|
dya2iocuni |
|- ( x e. ( J tX J ) -> E. y e. ~P ran R U. y = x ) |
13 |
|
simpr |
|- ( ( y e. ~P ran R /\ U. y = x ) -> U. y = x ) |
14 |
1 2 3
|
dya2iocct |
|- ran R ~<_ _om |
15 |
|
ctex |
|- ( ran R ~<_ _om -> ran R e. _V ) |
16 |
14 15
|
mp1i |
|- ( y e. ~P ran R -> ran R e. _V ) |
17 |
|
elpwi |
|- ( y e. ~P ran R -> y C_ ran R ) |
18 |
|
ssct |
|- ( ( y C_ ran R /\ ran R ~<_ _om ) -> y ~<_ _om ) |
19 |
17 14 18
|
sylancl |
|- ( y e. ~P ran R -> y ~<_ _om ) |
20 |
|
elsigagen2 |
|- ( ( ran R e. _V /\ y C_ ran R /\ y ~<_ _om ) -> U. y e. ( sigaGen ` ran R ) ) |
21 |
16 17 19 20
|
syl3anc |
|- ( y e. ~P ran R -> U. y e. ( sigaGen ` ran R ) ) |
22 |
21
|
adantr |
|- ( ( y e. ~P ran R /\ U. y = x ) -> U. y e. ( sigaGen ` ran R ) ) |
23 |
13 22
|
eqeltrrd |
|- ( ( y e. ~P ran R /\ U. y = x ) -> x e. ( sigaGen ` ran R ) ) |
24 |
23
|
rexlimiva |
|- ( E. y e. ~P ran R U. y = x -> x e. ( sigaGen ` ran R ) ) |
25 |
12 24
|
syl |
|- ( x e. ( J tX J ) -> x e. ( sigaGen ` ran R ) ) |
26 |
25
|
ssriv |
|- ( J tX J ) C_ ( sigaGen ` ran R ) |
27 |
14 15
|
ax-mp |
|- ran R e. _V |
28 |
|
sigagenss2 |
|- ( ( U. ( J tX J ) = U. ran R /\ ( J tX J ) C_ ( sigaGen ` ran R ) /\ ran R e. _V ) -> ( sigaGen ` ( J tX J ) ) C_ ( sigaGen ` ran R ) ) |
29 |
11 26 27 28
|
mp3an |
|- ( sigaGen ` ( J tX J ) ) C_ ( sigaGen ` ran R ) |