Description: The Borel algebra on ( RR X. RR ) is a subset of the sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of ( RR X. RR ) . This is a step of the proof of Proposition 1.1.5 of Cohn p. 4. (Contributed by Thierry Arnoux, 17-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sxbrsiga.0 | |
|
dya2ioc.1 | |
||
dya2ioc.2 | |
||
Assertion | sxbrsigalem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sxbrsiga.0 | |
|
2 | dya2ioc.1 | |
|
3 | dya2ioc.2 | |
|
4 | 1 2 3 | dya2iocucvr | |
5 | retop | |
|
6 | 1 5 | eqeltri | |
7 | uniretop | |
|
8 | 1 | unieqi | |
9 | 7 8 | eqtr4i | |
10 | 6 6 9 9 | txunii | |
11 | 4 10 | eqtr2i | |
12 | 1 2 3 | dya2iocuni | |
13 | simpr | |
|
14 | 1 2 3 | dya2iocct | |
15 | ctex | |
|
16 | 14 15 | mp1i | |
17 | elpwi | |
|
18 | ssct | |
|
19 | 17 14 18 | sylancl | |
20 | elsigagen2 | |
|
21 | 16 17 19 20 | syl3anc | |
22 | 21 | adantr | |
23 | 13 22 | eqeltrrd | |
24 | 23 | rexlimiva | |
25 | 12 24 | syl | |
26 | 25 | ssriv | |
27 | 14 15 | ax-mp | |
28 | sigagenss2 | |
|
29 | 11 26 27 28 | mp3an | |