Metamath Proof Explorer


Theorem sxbrsigalem1

Description: The Borel algebra on ( RR X. RR ) is a subset of the sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of ( RR X. RR ) . This is a step of the proof of Proposition 1.1.5 of Cohn p. 4. (Contributed by Thierry Arnoux, 17-Sep-2017)

Ref Expression
Hypotheses sxbrsiga.0 J=topGenran.
dya2ioc.1 I=x,nx2nx+12n
dya2ioc.2 R=uranI,vranIu×v
Assertion sxbrsigalem1 𝛔J×tJ𝛔ranR

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J=topGenran.
2 dya2ioc.1 I=x,nx2nx+12n
3 dya2ioc.2 R=uranI,vranIu×v
4 1 2 3 dya2iocucvr ranR=2
5 retop topGenran.Top
6 1 5 eqeltri JTop
7 uniretop =topGenran.
8 1 unieqi J=topGenran.
9 7 8 eqtr4i =J
10 6 6 9 9 txunii 2=J×tJ
11 4 10 eqtr2i J×tJ=ranR
12 1 2 3 dya2iocuni xJ×tJy𝒫ranRy=x
13 simpr y𝒫ranRy=xy=x
14 1 2 3 dya2iocct ranRω
15 ctex ranRωranRV
16 14 15 mp1i y𝒫ranRranRV
17 elpwi y𝒫ranRyranR
18 ssct yranRranRωyω
19 17 14 18 sylancl y𝒫ranRyω
20 elsigagen2 ranRVyranRyωy𝛔ranR
21 16 17 19 20 syl3anc y𝒫ranRy𝛔ranR
22 21 adantr y𝒫ranRy=xy𝛔ranR
23 13 22 eqeltrrd y𝒫ranRy=xx𝛔ranR
24 23 rexlimiva y𝒫ranRy=xx𝛔ranR
25 12 24 syl xJ×tJx𝛔ranR
26 25 ssriv J×tJ𝛔ranR
27 14 15 ax-mp ranRV
28 sigagenss2 J×tJ=ranRJ×tJ𝛔ranRranRV𝛔J×tJ𝛔ranR
29 11 26 27 28 mp3an 𝛔J×tJ𝛔ranR