Metamath Proof Explorer


Theorem sxbrsigalem1

Description: The Borel algebra on ( RR X. RR ) is a subset of the sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of ( RR X. RR ) . This is a step of the proof of Proposition 1.1.5 of Cohn p. 4. (Contributed by Thierry Arnoux, 17-Sep-2017)

Ref Expression
Hypotheses sxbrsiga.0 J = topGen ran .
dya2ioc.1 I = x , n x 2 n x + 1 2 n
dya2ioc.2 R = u ran I , v ran I u × v
Assertion sxbrsigalem1 𝛔 J × t J 𝛔 ran R

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J = topGen ran .
2 dya2ioc.1 I = x , n x 2 n x + 1 2 n
3 dya2ioc.2 R = u ran I , v ran I u × v
4 1 2 3 dya2iocucvr ran R = 2
5 retop topGen ran . Top
6 1 5 eqeltri J Top
7 uniretop = topGen ran .
8 1 unieqi J = topGen ran .
9 7 8 eqtr4i = J
10 6 6 9 9 txunii 2 = J × t J
11 4 10 eqtr2i J × t J = ran R
12 1 2 3 dya2iocuni x J × t J y 𝒫 ran R y = x
13 simpr y 𝒫 ran R y = x y = x
14 1 2 3 dya2iocct ran R ω
15 ctex ran R ω ran R V
16 14 15 mp1i y 𝒫 ran R ran R V
17 elpwi y 𝒫 ran R y ran R
18 ssct y ran R ran R ω y ω
19 17 14 18 sylancl y 𝒫 ran R y ω
20 elsigagen2 ran R V y ran R y ω y 𝛔 ran R
21 16 17 19 20 syl3anc y 𝒫 ran R y 𝛔 ran R
22 21 adantr y 𝒫 ran R y = x y 𝛔 ran R
23 13 22 eqeltrrd y 𝒫 ran R y = x x 𝛔 ran R
24 23 rexlimiva y 𝒫 ran R y = x x 𝛔 ran R
25 12 24 syl x J × t J x 𝛔 ran R
26 25 ssriv J × t J 𝛔 ran R
27 14 15 ax-mp ran R V
28 sigagenss2 J × t J = ran R J × t J 𝛔 ran R ran R V 𝛔 J × t J 𝛔 ran R
29 11 26 27 28 mp3an 𝛔 J × t J 𝛔 ran R