| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sxbrsiga.0 |
|
| 2 |
|
dya2ioc.1 |
|
| 3 |
|
dya2ioc.2 |
|
| 4 |
|
ssrab2 |
|
| 5 |
1 2 3
|
dya2iocrfn |
|
| 6 |
|
zex |
|
| 7 |
6 6
|
mpoex |
|
| 8 |
2 7
|
eqeltri |
|
| 9 |
8
|
rnex |
|
| 10 |
9 9
|
xpex |
|
| 11 |
|
fnex |
|
| 12 |
5 10 11
|
mp2an |
|
| 13 |
12
|
rnex |
|
| 14 |
13
|
elpw2 |
|
| 15 |
4 14
|
mpbir |
|
| 16 |
15
|
a1i |
|
| 17 |
|
rex0 |
|
| 18 |
|
rexeq |
|
| 19 |
17 18
|
mtbiri |
|
| 20 |
19
|
ralrimivw |
|
| 21 |
|
rabeq0 |
|
| 22 |
20 21
|
sylibr |
|
| 23 |
22
|
unieqd |
|
| 24 |
|
uni0 |
|
| 25 |
23 24
|
eqtrdi |
|
| 26 |
|
0ss |
|
| 27 |
25 26
|
eqsstrdi |
|
| 28 |
|
elequ2 |
|
| 29 |
|
sseq1 |
|
| 30 |
28 29
|
anbi12d |
|
| 31 |
30
|
rexbidv |
|
| 32 |
31
|
elrab |
|
| 33 |
|
simpr |
|
| 34 |
33
|
reximi |
|
| 35 |
|
r19.9rzv |
|
| 36 |
34 35
|
imbitrrid |
|
| 37 |
36
|
adantld |
|
| 38 |
32 37
|
biimtrid |
|
| 39 |
38
|
ralrimiv |
|
| 40 |
|
unissb |
|
| 41 |
39 40
|
sylibr |
|
| 42 |
27 41
|
pm2.61ine |
|
| 43 |
42
|
a1i |
|
| 44 |
1 2 3
|
dya2iocnei |
|
| 45 |
|
simpl |
|
| 46 |
|
ssel2 |
|
| 47 |
46
|
ancoms |
|
| 48 |
47
|
adantl |
|
| 49 |
|
simpr |
|
| 50 |
|
elequ1 |
|
| 51 |
50
|
anbi1d |
|
| 52 |
51
|
rspcev |
|
| 53 |
48 49 52
|
syl2anc |
|
| 54 |
45 53
|
jca |
|
| 55 |
54 32
|
sylibr |
|
| 56 |
|
simprl |
|
| 57 |
55 56
|
jca |
|
| 58 |
57
|
reximi2 |
|
| 59 |
44 58
|
syl |
|
| 60 |
|
eluni2 |
|
| 61 |
59 60
|
sylibr |
|
| 62 |
43 61
|
eqelssd |
|
| 63 |
|
unieq |
|
| 64 |
63
|
eqeq1d |
|
| 65 |
64
|
rspcev |
|
| 66 |
16 62 65
|
syl2anc |
|