Description: The dyadic rectangular set collection covers ( RR X. RR ) . (Contributed by Thierry Arnoux, 18-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sxbrsiga.0 | |
|
dya2ioc.1 | |
||
dya2ioc.2 | |
||
Assertion | dya2iocucvr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sxbrsiga.0 | |
|
2 | dya2ioc.1 | |
|
3 | dya2ioc.2 | |
|
4 | unissb | |
|
5 | vex | |
|
6 | vex | |
|
7 | 5 6 | xpex | |
8 | 3 7 | elrnmpo | |
9 | simpr | |
|
10 | pwssb | |
|
11 | ovex | |
|
12 | 2 11 | elrnmpo | |
13 | simpr | |
|
14 | simpll | |
|
15 | 14 | zred | |
16 | 2re | |
|
17 | 16 | a1i | |
18 | 2ne0 | |
|
19 | 18 | a1i | |
20 | simplr | |
|
21 | 17 19 20 | reexpclzd | |
22 | 2cnd | |
|
23 | 22 19 20 | expne0d | |
24 | 15 21 23 | redivcld | |
25 | 1red | |
|
26 | 15 25 | readdcld | |
27 | 26 21 23 | redivcld | |
28 | 27 | rexrd | |
29 | icossre | |
|
30 | 24 28 29 | syl2anc | |
31 | 13 30 | eqsstrd | |
32 | 31 | ex | |
33 | 32 | rexlimivv | |
34 | 12 33 | sylbi | |
35 | 10 34 | mprgbir | |
36 | 35 | sseli | |
37 | 36 | elpwid | |
38 | 35 | sseli | |
39 | 38 | elpwid | |
40 | xpss12 | |
|
41 | 37 39 40 | syl2an | |
42 | 41 | adantr | |
43 | 9 42 | eqsstrd | |
44 | 43 | ex | |
45 | 44 | rexlimivv | |
46 | 8 45 | sylbi | |
47 | 4 46 | mprgbir | |
48 | retop | |
|
49 | 1 48 | eqeltri | |
50 | 49 49 | txtopi | |
51 | uniretop | |
|
52 | 1 | unieqi | |
53 | 51 52 | eqtr4i | |
54 | 49 49 53 53 | txunii | |
55 | 54 | topopn | |
56 | 1 2 3 | dya2iocuni | |
57 | 50 55 56 | mp2b | |
58 | simpr | |
|
59 | elpwi | |
|
60 | 59 | adantr | |
61 | 60 | unissd | |
62 | 58 61 | eqsstrrd | |
63 | 62 | rexlimiva | |
64 | 57 63 | ax-mp | |
65 | 47 64 | eqssi | |