Metamath Proof Explorer


Theorem dya2iocucvr

Description: The dyadic rectangular set collection covers ( RR X. RR ) . (Contributed by Thierry Arnoux, 18-Sep-2017)

Ref Expression
Hypotheses sxbrsiga.0 J=topGenran.
dya2ioc.1 I=x,nx2nx+12n
dya2ioc.2 R=uranI,vranIu×v
Assertion dya2iocucvr ranR=2

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J=topGenran.
2 dya2ioc.1 I=x,nx2nx+12n
3 dya2ioc.2 R=uranI,vranIu×v
4 unissb ranR2dranRd2
5 vex uV
6 vex vV
7 5 6 xpex u×vV
8 3 7 elrnmpo dranRuranIvranId=u×v
9 simpr uranIvranId=u×vd=u×v
10 pwssb ranI𝒫dranId
11 ovex x2nx+12nV
12 2 11 elrnmpo dranIxnd=x2nx+12n
13 simpr xnd=x2nx+12nd=x2nx+12n
14 simpll xnd=x2nx+12nx
15 14 zred xnd=x2nx+12nx
16 2re 2
17 16 a1i xnd=x2nx+12n2
18 2ne0 20
19 18 a1i xnd=x2nx+12n20
20 simplr xnd=x2nx+12nn
21 17 19 20 reexpclzd xnd=x2nx+12n2n
22 2cnd xnd=x2nx+12n2
23 22 19 20 expne0d xnd=x2nx+12n2n0
24 15 21 23 redivcld xnd=x2nx+12nx2n
25 1red xnd=x2nx+12n1
26 15 25 readdcld xnd=x2nx+12nx+1
27 26 21 23 redivcld xnd=x2nx+12nx+12n
28 27 rexrd xnd=x2nx+12nx+12n*
29 icossre x2nx+12n*x2nx+12n
30 24 28 29 syl2anc xnd=x2nx+12nx2nx+12n
31 13 30 eqsstrd xnd=x2nx+12nd
32 31 ex xnd=x2nx+12nd
33 32 rexlimivv xnd=x2nx+12nd
34 12 33 sylbi dranId
35 10 34 mprgbir ranI𝒫
36 35 sseli uranIu𝒫
37 36 elpwid uranIu
38 35 sseli vranIv𝒫
39 38 elpwid vranIv
40 xpss12 uvu×v2
41 37 39 40 syl2an uranIvranIu×v2
42 41 adantr uranIvranId=u×vu×v2
43 9 42 eqsstrd uranIvranId=u×vd2
44 43 ex uranIvranId=u×vd2
45 44 rexlimivv uranIvranId=u×vd2
46 8 45 sylbi dranRd2
47 4 46 mprgbir ranR2
48 retop topGenran.Top
49 1 48 eqeltri JTop
50 49 49 txtopi J×tJTop
51 uniretop =topGenran.
52 1 unieqi J=topGenran.
53 51 52 eqtr4i =J
54 49 49 53 53 txunii 2=J×tJ
55 54 topopn J×tJTop2J×tJ
56 1 2 3 dya2iocuni 2J×tJc𝒫ranRc=2
57 50 55 56 mp2b c𝒫ranRc=2
58 simpr c𝒫ranRc=2c=2
59 elpwi c𝒫ranRcranR
60 59 adantr c𝒫ranRc=2cranR
61 60 unissd c𝒫ranRc=2cranR
62 58 61 eqsstrrd c𝒫ranRc=22ranR
63 62 rexlimiva c𝒫ranRc=22ranR
64 57 63 ax-mp 2ranR
65 47 64 eqssi ranR=2