| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sxbrsiga.0 |
|
| 2 |
|
dya2ioc.1 |
|
| 3 |
|
dya2ioc.2 |
|
| 4 |
|
unissb |
|
| 5 |
|
vex |
|
| 6 |
|
vex |
|
| 7 |
5 6
|
xpex |
|
| 8 |
3 7
|
elrnmpo |
|
| 9 |
|
simpr |
|
| 10 |
|
pwssb |
|
| 11 |
|
ovex |
|
| 12 |
2 11
|
elrnmpo |
|
| 13 |
|
simpr |
|
| 14 |
|
simpll |
|
| 15 |
14
|
zred |
|
| 16 |
|
2re |
|
| 17 |
16
|
a1i |
|
| 18 |
|
2ne0 |
|
| 19 |
18
|
a1i |
|
| 20 |
|
simplr |
|
| 21 |
17 19 20
|
reexpclzd |
|
| 22 |
|
2cnd |
|
| 23 |
22 19 20
|
expne0d |
|
| 24 |
15 21 23
|
redivcld |
|
| 25 |
|
1red |
|
| 26 |
15 25
|
readdcld |
|
| 27 |
26 21 23
|
redivcld |
|
| 28 |
27
|
rexrd |
|
| 29 |
|
icossre |
|
| 30 |
24 28 29
|
syl2anc |
|
| 31 |
13 30
|
eqsstrd |
|
| 32 |
31
|
ex |
|
| 33 |
32
|
rexlimivv |
|
| 34 |
12 33
|
sylbi |
|
| 35 |
10 34
|
mprgbir |
|
| 36 |
35
|
sseli |
|
| 37 |
36
|
elpwid |
|
| 38 |
35
|
sseli |
|
| 39 |
38
|
elpwid |
|
| 40 |
|
xpss12 |
|
| 41 |
37 39 40
|
syl2an |
|
| 42 |
41
|
adantr |
|
| 43 |
9 42
|
eqsstrd |
|
| 44 |
43
|
ex |
|
| 45 |
44
|
rexlimivv |
|
| 46 |
8 45
|
sylbi |
|
| 47 |
4 46
|
mprgbir |
|
| 48 |
|
retop |
|
| 49 |
1 48
|
eqeltri |
|
| 50 |
49 49
|
txtopi |
|
| 51 |
|
uniretop |
|
| 52 |
1
|
unieqi |
|
| 53 |
51 52
|
eqtr4i |
|
| 54 |
49 49 53 53
|
txunii |
|
| 55 |
54
|
topopn |
|
| 56 |
1 2 3
|
dya2iocuni |
|
| 57 |
50 55 56
|
mp2b |
|
| 58 |
|
simpr |
|
| 59 |
|
elpwi |
|
| 60 |
59
|
adantr |
|
| 61 |
60
|
unissd |
|
| 62 |
58 61
|
eqsstrrd |
|
| 63 |
62
|
rexlimiva |
|
| 64 |
57 63
|
ax-mp |
|
| 65 |
47 64
|
eqssi |
|