Metamath Proof Explorer


Theorem sxbrsigalem2

Description: The sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of ( RR X. RR ) is a subset of the sigma-algebra generated by the closed half-spaces of ( RR X. RR ) . The proof goes by noting the fact that the dyadic rectangles are intersections of a 'vertical band' and an 'horizontal band', which themselves are differences of closed half-spaces. (Contributed by Thierry Arnoux, 17-Sep-2017)

Ref Expression
Hypotheses sxbrsiga.0 J=topGenran.
dya2ioc.1 I=x,nx2nx+12n
dya2ioc.2 R=uranI,vranIu×v
Assertion sxbrsigalem2 𝛔ranR𝛔ranee+∞×ranf×f+∞

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J=topGenran.
2 dya2ioc.1 I=x,nx2nx+12n
3 dya2ioc.2 R=uranI,vranIu×v
4 1 2 3 dya2iocucvr ranR=2
5 sxbrsigalem0 ranee+∞×ranf×f+∞=2
6 4 5 eqtr4i ranR=ranee+∞×ranf×f+∞
7 vex uV
8 vex vV
9 7 8 xpex u×vV
10 3 9 elrnmpo dranRuranIvranId=u×v
11 simpr uranIvranId=u×vd=u×v
12 1 2 dya2icobrsiga ranI𝔅
13 brsigasspwrn 𝔅𝒫
14 12 13 sstri ranI𝒫
15 14 sseli uranIu𝒫
16 15 elpwid uranIu
17 14 sseli vranIv𝒫
18 17 elpwid vranIv
19 xpinpreima2 uvu×v=1st2-1u2nd2-1v
20 16 18 19 syl2an uranIvranIu×v=1st2-1u2nd2-1v
21 reex V
22 21 mptex ee+∞×V
23 22 rnex ranee+∞×V
24 21 mptex f×f+∞V
25 24 rnex ranf×f+∞V
26 23 25 unex ranee+∞×ranf×f+∞V
27 26 a1i ranee+∞×ranf×f+∞V
28 27 sgsiga 𝛔ranee+∞×ranf×f+∞ransigAlgebra
29 28 mptru 𝛔ranee+∞×ranf×f+∞ransigAlgebra
30 29 a1i uranIvranI𝛔ranee+∞×ranf×f+∞ransigAlgebra
31 1stpreima u1st2-1u=u×
32 16 31 syl uranI1st2-1u=u×
33 ovex x2nx+12nV
34 2 33 elrnmpo uranIxnu=x2nx+12n
35 simpr xnu=x2nx+12nu=x2nx+12n
36 35 xpeq1d xnu=x2nx+12nu×=x2nx+12n×
37 simpl xnx
38 37 zred xnx
39 2rp 2+
40 39 a1i xn2+
41 simpr xnn
42 40 41 rpexpcld xn2n+
43 38 42 rerpdivcld xnx2n
44 43 rexrd xnx2n*
45 1red xn1
46 38 45 readdcld xnx+1
47 46 42 rerpdivcld xnx+12n
48 47 rexrd xnx+12n*
49 pnfxr +∞*
50 49 a1i xn+∞*
51 38 lep1d xnxx+1
52 38 46 42 51 lediv1dd xnx2nx+12n
53 pnfge x+12n*x+12n+∞
54 48 53 syl xnx+12n+∞
55 difico x2n*x+12n*+∞*x2nx+12nx+12n+∞x2n+∞x+12n+∞=x2nx+12n
56 44 48 50 52 54 55 syl32anc xnx2n+∞x+12n+∞=x2nx+12n
57 56 xpeq1d xnx2n+∞x+12n+∞×=x2nx+12n×
58 difxp1 x2n+∞x+12n+∞×=x2n+∞×x+12n+∞×
59 57 58 eqtr3di xnx2nx+12n×=x2n+∞×x+12n+∞×
60 29 a1i xn𝛔ranee+∞×ranf×f+∞ransigAlgebra
61 ssun1 ranee+∞×ranee+∞×ranf×f+∞
62 eqid x2n+∞×=x2n+∞×
63 oveq1 e=x2ne+∞=x2n+∞
64 63 xpeq1d e=x2ne+∞×=x2n+∞×
65 64 rspceeqv x2nx2n+∞×=x2n+∞×ex2n+∞×=e+∞×
66 43 62 65 sylancl xnex2n+∞×=e+∞×
67 eqid ee+∞×=ee+∞×
68 ovex e+∞V
69 68 21 xpex e+∞×V
70 67 69 elrnmpti x2n+∞×ranee+∞×ex2n+∞×=e+∞×
71 66 70 sylibr xnx2n+∞×ranee+∞×
72 61 71 sselid xnx2n+∞×ranee+∞×ranf×f+∞
73 elsigagen ranee+∞×ranf×f+∞Vx2n+∞×ranee+∞×ranf×f+∞x2n+∞×𝛔ranee+∞×ranf×f+∞
74 26 72 73 sylancr xnx2n+∞×𝛔ranee+∞×ranf×f+∞
75 eqid x+12n+∞×=x+12n+∞×
76 oveq1 e=x+12ne+∞=x+12n+∞
77 76 xpeq1d e=x+12ne+∞×=x+12n+∞×
78 77 rspceeqv x+12nx+12n+∞×=x+12n+∞×ex+12n+∞×=e+∞×
79 47 75 78 sylancl xnex+12n+∞×=e+∞×
80 67 69 elrnmpti x+12n+∞×ranee+∞×ex+12n+∞×=e+∞×
81 79 80 sylibr xnx+12n+∞×ranee+∞×
82 61 81 sselid xnx+12n+∞×ranee+∞×ranf×f+∞
83 elsigagen ranee+∞×ranf×f+∞Vx+12n+∞×ranee+∞×ranf×f+∞x+12n+∞×𝛔ranee+∞×ranf×f+∞
84 26 82 83 sylancr xnx+12n+∞×𝛔ranee+∞×ranf×f+∞
85 difelsiga 𝛔ranee+∞×ranf×f+∞ransigAlgebrax2n+∞×𝛔ranee+∞×ranf×f+∞x+12n+∞×𝛔ranee+∞×ranf×f+∞x2n+∞×x+12n+∞×𝛔ranee+∞×ranf×f+∞
86 60 74 84 85 syl3anc xnx2n+∞×x+12n+∞×𝛔ranee+∞×ranf×f+∞
87 59 86 eqeltrd xnx2nx+12n×𝛔ranee+∞×ranf×f+∞
88 87 adantr xnu=x2nx+12nx2nx+12n×𝛔ranee+∞×ranf×f+∞
89 36 88 eqeltrd xnu=x2nx+12nu×𝛔ranee+∞×ranf×f+∞
90 89 ex xnu=x2nx+12nu×𝛔ranee+∞×ranf×f+∞
91 90 rexlimivv xnu=x2nx+12nu×𝛔ranee+∞×ranf×f+∞
92 34 91 sylbi uranIu×𝛔ranee+∞×ranf×f+∞
93 32 92 eqeltrd uranI1st2-1u𝛔ranee+∞×ranf×f+∞
94 93 adantr uranIvranI1st2-1u𝛔ranee+∞×ranf×f+∞
95 2ndpreima v2nd2-1v=×v
96 18 95 syl vranI2nd2-1v=×v
97 2 33 elrnmpo vranIxnv=x2nx+12n
98 simpr xnv=x2nx+12nv=x2nx+12n
99 98 xpeq2d xnv=x2nx+12n×v=×x2nx+12n
100 56 xpeq2d xn×x2n+∞x+12n+∞=×x2nx+12n
101 difxp2 ×x2n+∞x+12n+∞=×x2n+∞×x+12n+∞
102 100 101 eqtr3di xn×x2nx+12n=×x2n+∞×x+12n+∞
103 ssun2 ranf×f+∞ranee+∞×ranf×f+∞
104 eqid ×x2n+∞=×x2n+∞
105 oveq1 f=x2nf+∞=x2n+∞
106 105 xpeq2d f=x2n×f+∞=×x2n+∞
107 106 rspceeqv x2n×x2n+∞=×x2n+∞f×x2n+∞=×f+∞
108 43 104 107 sylancl xnf×x2n+∞=×f+∞
109 eqid f×f+∞=f×f+∞
110 ovex f+∞V
111 21 110 xpex ×f+∞V
112 109 111 elrnmpti ×x2n+∞ranf×f+∞f×x2n+∞=×f+∞
113 108 112 sylibr xn×x2n+∞ranf×f+∞
114 103 113 sselid xn×x2n+∞ranee+∞×ranf×f+∞
115 elsigagen ranee+∞×ranf×f+∞V×x2n+∞ranee+∞×ranf×f+∞×x2n+∞𝛔ranee+∞×ranf×f+∞
116 26 114 115 sylancr xn×x2n+∞𝛔ranee+∞×ranf×f+∞
117 eqid ×x+12n+∞=×x+12n+∞
118 oveq1 f=x+12nf+∞=x+12n+∞
119 118 xpeq2d f=x+12n×f+∞=×x+12n+∞
120 119 rspceeqv x+12n×x+12n+∞=×x+12n+∞f×x+12n+∞=×f+∞
121 47 117 120 sylancl xnf×x+12n+∞=×f+∞
122 109 111 elrnmpti ×x+12n+∞ranf×f+∞f×x+12n+∞=×f+∞
123 121 122 sylibr xn×x+12n+∞ranf×f+∞
124 103 123 sselid xn×x+12n+∞ranee+∞×ranf×f+∞
125 elsigagen ranee+∞×ranf×f+∞V×x+12n+∞ranee+∞×ranf×f+∞×x+12n+∞𝛔ranee+∞×ranf×f+∞
126 26 124 125 sylancr xn×x+12n+∞𝛔ranee+∞×ranf×f+∞
127 difelsiga 𝛔ranee+∞×ranf×f+∞ransigAlgebra×x2n+∞𝛔ranee+∞×ranf×f+∞×x+12n+∞𝛔ranee+∞×ranf×f+∞×x2n+∞×x+12n+∞𝛔ranee+∞×ranf×f+∞
128 60 116 126 127 syl3anc xn×x2n+∞×x+12n+∞𝛔ranee+∞×ranf×f+∞
129 102 128 eqeltrd xn×x2nx+12n𝛔ranee+∞×ranf×f+∞
130 129 adantr xnv=x2nx+12n×x2nx+12n𝛔ranee+∞×ranf×f+∞
131 99 130 eqeltrd xnv=x2nx+12n×v𝛔ranee+∞×ranf×f+∞
132 131 ex xnv=x2nx+12n×v𝛔ranee+∞×ranf×f+∞
133 132 rexlimivv xnv=x2nx+12n×v𝛔ranee+∞×ranf×f+∞
134 97 133 sylbi vranI×v𝛔ranee+∞×ranf×f+∞
135 96 134 eqeltrd vranI2nd2-1v𝛔ranee+∞×ranf×f+∞
136 135 adantl uranIvranI2nd2-1v𝛔ranee+∞×ranf×f+∞
137 inelsiga 𝛔ranee+∞×ranf×f+∞ransigAlgebra1st2-1u𝛔ranee+∞×ranf×f+∞2nd2-1v𝛔ranee+∞×ranf×f+∞1st2-1u2nd2-1v𝛔ranee+∞×ranf×f+∞
138 30 94 136 137 syl3anc uranIvranI1st2-1u2nd2-1v𝛔ranee+∞×ranf×f+∞
139 20 138 eqeltrd uranIvranIu×v𝛔ranee+∞×ranf×f+∞
140 139 adantr uranIvranId=u×vu×v𝛔ranee+∞×ranf×f+∞
141 11 140 eqeltrd uranIvranId=u×vd𝛔ranee+∞×ranf×f+∞
142 141 ex uranIvranId=u×vd𝛔ranee+∞×ranf×f+∞
143 142 rexlimivv uranIvranId=u×vd𝛔ranee+∞×ranf×f+∞
144 10 143 sylbi dranRd𝛔ranee+∞×ranf×f+∞
145 144 ssriv ranR𝛔ranee+∞×ranf×f+∞
146 sigagenss2 ranR=ranee+∞×ranf×f+∞ranR𝛔ranee+∞×ranf×f+∞ranee+∞×ranf×f+∞V𝛔ranR𝛔ranee+∞×ranf×f+∞
147 6 145 26 146 mp3an 𝛔ranR𝛔ranee+∞×ranf×f+∞