Metamath Proof Explorer


Theorem difico

Description: The difference between two closed-below, open-above intervals sharing the same upper bound. (Contributed by Thierry Arnoux, 13-Oct-2017)

Ref Expression
Assertion difico A * B * C * A B B C A C B C = A B

Proof

Step Hyp Ref Expression
1 icodisj A * B * C * A B B C =
2 undif4 A B B C = A B B C B C = A B B C B C
3 1 2 syl A * B * C * A B B C B C = A B B C B C
4 3 adantr A * B * C * A B B C A B B C B C = A B B C B C
5 difid B C B C =
6 5 uneq2i A B B C B C = A B
7 un0 A B = A B
8 6 7 eqtri A B B C B C = A B
9 8 a1i A * B * C * A B B C A B B C B C = A B
10 icoun A * B * C * A B B C A B B C = A C
11 10 difeq1d A * B * C * A B B C A B B C B C = A C B C
12 4 9 11 3eqtr3rd A * B * C * A B B C A C B C = A B