Metamath Proof Explorer


Theorem difico

Description: The difference between two closed-below, open-above intervals sharing the same upper bound. (Contributed by Thierry Arnoux, 13-Oct-2017)

Ref Expression
Assertion difico A*B*C*ABBCACBC=AB

Proof

Step Hyp Ref Expression
1 icodisj A*B*C*ABBC=
2 undif4 ABBC=ABBCBC=ABBCBC
3 1 2 syl A*B*C*ABBCBC=ABBCBC
4 3 adantr A*B*C*ABBCABBCBC=ABBCBC
5 difid BCBC=
6 5 uneq2i ABBCBC=AB
7 un0 AB=AB
8 6 7 eqtri ABBCBC=AB
9 8 a1i A*B*C*ABBCABBCBC=AB
10 icoun A*B*C*ABBCABBC=AC
11 10 difeq1d A*B*C*ABBCABBCBC=ACBC
12 4 9 11 3eqtr3rd A*B*C*ABBCACBC=AB