Metamath Proof Explorer


Theorem difxp2

Description: Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013) (Revised by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion difxp2 A×BC=A×BA×C

Proof

Step Hyp Ref Expression
1 difxp A×BA×C=AA×BA×BC
2 difid AA=
3 2 xpeq1i AA×B=×B
4 0xp ×B=
5 3 4 eqtri AA×B=
6 5 uneq1i AA×BA×BC=A×BC
7 uncom A×BC=A×BC
8 un0 A×BC=A×BC
9 7 8 eqtri A×BC=A×BC
10 1 6 9 3eqtrri A×BC=A×BA×C