Metamath Proof Explorer


Theorem djudisj

Description: Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014)

Ref Expression
Assertion djudisj AB=xAx×CyBy×D=

Proof

Step Hyp Ref Expression
1 djussxp xAx×CA×V
2 incom A×VyBy×D=yBy×DA×V
3 djussxp yBy×DB×V
4 incom B×VA×V=A×VB×V
5 xpdisj1 AB=A×VB×V=
6 4 5 eqtrid AB=B×VA×V=
7 ssdisj yBy×DB×VB×VA×V=yBy×DA×V=
8 3 6 7 sylancr AB=yBy×DA×V=
9 2 8 eqtrid AB=A×VyBy×D=
10 ssdisj xAx×CA×VA×VyBy×D=xAx×CyBy×D=
11 1 9 10 sylancr AB=xAx×CyBy×D=