| Step |
Hyp |
Ref |
Expression |
| 1 |
|
djussxp |
|- U_ x e. A ( { x } X. C ) C_ ( A X. _V ) |
| 2 |
|
incom |
|- ( ( A X. _V ) i^i U_ y e. B ( { y } X. D ) ) = ( U_ y e. B ( { y } X. D ) i^i ( A X. _V ) ) |
| 3 |
|
djussxp |
|- U_ y e. B ( { y } X. D ) C_ ( B X. _V ) |
| 4 |
|
incom |
|- ( ( B X. _V ) i^i ( A X. _V ) ) = ( ( A X. _V ) i^i ( B X. _V ) ) |
| 5 |
|
xpdisj1 |
|- ( ( A i^i B ) = (/) -> ( ( A X. _V ) i^i ( B X. _V ) ) = (/) ) |
| 6 |
4 5
|
eqtrid |
|- ( ( A i^i B ) = (/) -> ( ( B X. _V ) i^i ( A X. _V ) ) = (/) ) |
| 7 |
|
ssdisj |
|- ( ( U_ y e. B ( { y } X. D ) C_ ( B X. _V ) /\ ( ( B X. _V ) i^i ( A X. _V ) ) = (/) ) -> ( U_ y e. B ( { y } X. D ) i^i ( A X. _V ) ) = (/) ) |
| 8 |
3 6 7
|
sylancr |
|- ( ( A i^i B ) = (/) -> ( U_ y e. B ( { y } X. D ) i^i ( A X. _V ) ) = (/) ) |
| 9 |
2 8
|
eqtrid |
|- ( ( A i^i B ) = (/) -> ( ( A X. _V ) i^i U_ y e. B ( { y } X. D ) ) = (/) ) |
| 10 |
|
ssdisj |
|- ( ( U_ x e. A ( { x } X. C ) C_ ( A X. _V ) /\ ( ( A X. _V ) i^i U_ y e. B ( { y } X. D ) ) = (/) ) -> ( U_ x e. A ( { x } X. C ) i^i U_ y e. B ( { y } X. D ) ) = (/) ) |
| 11 |
1 9 10
|
sylancr |
|- ( ( A i^i B ) = (/) -> ( U_ x e. A ( { x } X. C ) i^i U_ y e. B ( { y } X. D ) ) = (/) ) |