| Step |
Hyp |
Ref |
Expression |
| 1 |
|
djussxp |
⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) ⊆ ( 𝐴 × V ) |
| 2 |
|
incom |
⊢ ( ( 𝐴 × V ) ∩ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ) = ( ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ∩ ( 𝐴 × V ) ) |
| 3 |
|
djussxp |
⊢ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ⊆ ( 𝐵 × V ) |
| 4 |
|
incom |
⊢ ( ( 𝐵 × V ) ∩ ( 𝐴 × V ) ) = ( ( 𝐴 × V ) ∩ ( 𝐵 × V ) ) |
| 5 |
|
xpdisj1 |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 × V ) ∩ ( 𝐵 × V ) ) = ∅ ) |
| 6 |
4 5
|
eqtrid |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐵 × V ) ∩ ( 𝐴 × V ) ) = ∅ ) |
| 7 |
|
ssdisj |
⊢ ( ( ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ⊆ ( 𝐵 × V ) ∧ ( ( 𝐵 × V ) ∩ ( 𝐴 × V ) ) = ∅ ) → ( ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ∩ ( 𝐴 × V ) ) = ∅ ) |
| 8 |
3 6 7
|
sylancr |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ∩ ( 𝐴 × V ) ) = ∅ ) |
| 9 |
2 8
|
eqtrid |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 × V ) ∩ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ) = ∅ ) |
| 10 |
|
ssdisj |
⊢ ( ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) ⊆ ( 𝐴 × V ) ∧ ( ( 𝐴 × V ) ∩ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ) = ∅ ) → ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) ∩ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ) = ∅ ) |
| 11 |
1 9 10
|
sylancr |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) ∩ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ) = ∅ ) |