| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxp |
⊢ ( 𝑝 ∈ ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 2 |
1
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑝 ∈ ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 3 |
|
rexcom4 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ∃ 𝑖 ∃ 𝑥 ∈ 𝐴 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 4 |
|
rexcom4 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ∃ 𝑗 ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 5 |
4
|
exbii |
⊢ ( ∃ 𝑖 ∃ 𝑥 ∈ 𝐴 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ∃ 𝑖 ∃ 𝑗 ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 6 |
2 3 5
|
3bitri |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑝 ∈ ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑖 ∃ 𝑗 ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 7 |
|
eliun |
⊢ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑥 ∈ 𝐴 𝑝 ∈ ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ) |
| 8 |
|
eldif |
⊢ ( 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ ( 〈 𝑖 , 𝑗 〉 ∈ ( 𝐴 × 𝐵 ) ∧ ¬ 〈 𝑖 , 𝑗 〉 ∈ I ) ) |
| 9 |
|
opelxp |
⊢ ( 〈 𝑖 , 𝑗 〉 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ) |
| 10 |
|
df-br |
⊢ ( 𝑖 I 𝑗 ↔ 〈 𝑖 , 𝑗 〉 ∈ I ) |
| 11 |
|
vex |
⊢ 𝑗 ∈ V |
| 12 |
11
|
ideq |
⊢ ( 𝑖 I 𝑗 ↔ 𝑖 = 𝑗 ) |
| 13 |
10 12
|
bitr3i |
⊢ ( 〈 𝑖 , 𝑗 〉 ∈ I ↔ 𝑖 = 𝑗 ) |
| 14 |
13
|
necon3bbii |
⊢ ( ¬ 〈 𝑖 , 𝑗 〉 ∈ I ↔ 𝑖 ≠ 𝑗 ) |
| 15 |
9 14
|
anbi12i |
⊢ ( ( 〈 𝑖 , 𝑗 〉 ∈ ( 𝐴 × 𝐵 ) ∧ ¬ 〈 𝑖 , 𝑗 〉 ∈ I ) ↔ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) |
| 16 |
8 15
|
bitri |
⊢ ( 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) |
| 17 |
16
|
anbi2i |
⊢ ( ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) ) |
| 18 |
17
|
2exbii |
⊢ ( ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ↔ ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) ) |
| 19 |
|
eldifi |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → 𝑝 ∈ ( 𝐴 × 𝐵 ) ) |
| 20 |
|
elxpi |
⊢ ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ) ) |
| 21 |
|
simpl |
⊢ ( ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ) → 𝑝 = 〈 𝑖 , 𝑗 〉 ) |
| 22 |
21
|
2eximi |
⊢ ( ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ) → ∃ 𝑖 ∃ 𝑗 𝑝 = 〈 𝑖 , 𝑗 〉 ) |
| 23 |
19 20 22
|
3syl |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ∃ 𝑖 ∃ 𝑗 𝑝 = 〈 𝑖 , 𝑗 〉 ) |
| 24 |
23
|
ancli |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ ∃ 𝑖 ∃ 𝑗 𝑝 = 〈 𝑖 , 𝑗 〉 ) ) |
| 25 |
|
19.42vv |
⊢ ( ∃ 𝑖 ∃ 𝑗 ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = 〈 𝑖 , 𝑗 〉 ) ↔ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ ∃ 𝑖 ∃ 𝑗 𝑝 = 〈 𝑖 , 𝑗 〉 ) ) |
| 26 |
24 25
|
sylibr |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ∃ 𝑖 ∃ 𝑗 ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = 〈 𝑖 , 𝑗 〉 ) ) |
| 27 |
|
ancom |
⊢ ( ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = 〈 𝑖 , 𝑗 〉 ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) |
| 28 |
|
eleq1 |
⊢ ( 𝑝 = 〈 𝑖 , 𝑗 〉 → ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = 〈 𝑖 , 𝑗 〉 ) → ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) |
| 30 |
29
|
pm5.32da |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ( ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) ) |
| 31 |
27 30
|
bitrid |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ( ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = 〈 𝑖 , 𝑗 〉 ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) ) |
| 32 |
31
|
2exbidv |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ( ∃ 𝑖 ∃ 𝑗 ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = 〈 𝑖 , 𝑗 〉 ) ↔ ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) ) |
| 33 |
26 32
|
mpbid |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) |
| 34 |
28
|
biimpar |
⊢ ( ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) → 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) |
| 35 |
34
|
exlimivv |
⊢ ( ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) → 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) |
| 36 |
33 35
|
impbii |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) |
| 37 |
|
r19.42v |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 38 |
|
simprl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑖 ∈ { 𝑦 } ) |
| 39 |
|
velsn |
⊢ ( 𝑖 ∈ { 𝑦 } ↔ 𝑖 = 𝑦 ) |
| 40 |
38 39
|
sylib |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑖 = 𝑦 ) |
| 41 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑦 ∈ 𝐴 ) |
| 42 |
40 41
|
eqeltrd |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑖 ∈ 𝐴 ) |
| 43 |
|
simprr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) |
| 44 |
43
|
eldifad |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑗 ∈ 𝐵 ) |
| 45 |
43
|
eldifbd |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → ¬ 𝑗 ∈ { 𝑦 } ) |
| 46 |
|
velsn |
⊢ ( 𝑗 ∈ { 𝑦 } ↔ 𝑗 = 𝑦 ) |
| 47 |
46
|
necon3bbii |
⊢ ( ¬ 𝑗 ∈ { 𝑦 } ↔ 𝑗 ≠ 𝑦 ) |
| 48 |
45 47
|
sylib |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑗 ≠ 𝑦 ) |
| 49 |
48
|
necomd |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑦 ≠ 𝑗 ) |
| 50 |
40 49
|
eqnetrd |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑖 ≠ 𝑗 ) |
| 51 |
42 44 50
|
jca31 |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) |
| 52 |
51
|
adantll |
⊢ ( ( ( ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) |
| 53 |
|
sneq |
⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) |
| 54 |
53
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑖 ∈ { 𝑥 } ↔ 𝑖 ∈ { 𝑦 } ) ) |
| 55 |
53
|
difeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∖ { 𝑥 } ) = ( 𝐵 ∖ { 𝑦 } ) ) |
| 56 |
55
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ↔ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) |
| 57 |
54 56
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) ) |
| 58 |
57
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) |
| 59 |
58
|
biimpi |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) → ∃ 𝑦 ∈ 𝐴 ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) |
| 60 |
52 59
|
r19.29a |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) → ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) |
| 61 |
|
simpll |
⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → 𝑖 ∈ 𝐴 ) |
| 62 |
|
vsnid |
⊢ 𝑖 ∈ { 𝑖 } |
| 63 |
62
|
a1i |
⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → 𝑖 ∈ { 𝑖 } ) |
| 64 |
|
simplr |
⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → 𝑗 ∈ 𝐵 ) |
| 65 |
|
simpr |
⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → 𝑖 ≠ 𝑗 ) |
| 66 |
65
|
necomd |
⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → 𝑗 ≠ 𝑖 ) |
| 67 |
|
velsn |
⊢ ( 𝑗 ∈ { 𝑖 } ↔ 𝑗 = 𝑖 ) |
| 68 |
67
|
necon3bbii |
⊢ ( ¬ 𝑗 ∈ { 𝑖 } ↔ 𝑗 ≠ 𝑖 ) |
| 69 |
66 68
|
sylibr |
⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → ¬ 𝑗 ∈ { 𝑖 } ) |
| 70 |
64 69
|
eldifd |
⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → 𝑗 ∈ ( 𝐵 ∖ { 𝑖 } ) ) |
| 71 |
|
sneq |
⊢ ( 𝑥 = 𝑖 → { 𝑥 } = { 𝑖 } ) |
| 72 |
71
|
eleq2d |
⊢ ( 𝑥 = 𝑖 → ( 𝑖 ∈ { 𝑥 } ↔ 𝑖 ∈ { 𝑖 } ) ) |
| 73 |
71
|
difeq2d |
⊢ ( 𝑥 = 𝑖 → ( 𝐵 ∖ { 𝑥 } ) = ( 𝐵 ∖ { 𝑖 } ) ) |
| 74 |
73
|
eleq2d |
⊢ ( 𝑥 = 𝑖 → ( 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ↔ 𝑗 ∈ ( 𝐵 ∖ { 𝑖 } ) ) ) |
| 75 |
72 74
|
anbi12d |
⊢ ( 𝑥 = 𝑖 → ( ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ( 𝑖 ∈ { 𝑖 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑖 } ) ) ) ) |
| 76 |
75
|
rspcev |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑖 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑖 } ) ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) |
| 77 |
61 63 70 76
|
syl12anc |
⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) |
| 78 |
60 77
|
impbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) |
| 79 |
78
|
anbi2i |
⊢ ( ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) ) |
| 80 |
37 79
|
bitri |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) ) |
| 81 |
80
|
2exbii |
⊢ ( ∃ 𝑖 ∃ 𝑗 ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) ) |
| 82 |
18 36 81
|
3bitr4i |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ ∃ 𝑖 ∃ 𝑗 ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 83 |
6 7 82
|
3bitr4i |
⊢ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) |
| 84 |
83
|
eqriv |
⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) = ( ( 𝐴 × 𝐵 ) ∖ I ) |