Step |
Hyp |
Ref |
Expression |
1 |
|
elxp |
⊢ ( 𝑝 ∈ ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
2 |
1
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑝 ∈ ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
3 |
|
rexcom4 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ∃ 𝑖 ∃ 𝑥 ∈ 𝐴 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
4 |
|
rexcom4 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ∃ 𝑗 ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
5 |
4
|
exbii |
⊢ ( ∃ 𝑖 ∃ 𝑥 ∈ 𝐴 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ∃ 𝑖 ∃ 𝑗 ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
6 |
2 3 5
|
3bitri |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑝 ∈ ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑖 ∃ 𝑗 ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
7 |
|
eliun |
⊢ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑥 ∈ 𝐴 𝑝 ∈ ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ) |
8 |
|
eldif |
⊢ ( 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ ( 〈 𝑖 , 𝑗 〉 ∈ ( 𝐴 × 𝐵 ) ∧ ¬ 〈 𝑖 , 𝑗 〉 ∈ I ) ) |
9 |
|
opelxp |
⊢ ( 〈 𝑖 , 𝑗 〉 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ) |
10 |
|
df-br |
⊢ ( 𝑖 I 𝑗 ↔ 〈 𝑖 , 𝑗 〉 ∈ I ) |
11 |
|
vex |
⊢ 𝑗 ∈ V |
12 |
11
|
ideq |
⊢ ( 𝑖 I 𝑗 ↔ 𝑖 = 𝑗 ) |
13 |
10 12
|
bitr3i |
⊢ ( 〈 𝑖 , 𝑗 〉 ∈ I ↔ 𝑖 = 𝑗 ) |
14 |
13
|
necon3bbii |
⊢ ( ¬ 〈 𝑖 , 𝑗 〉 ∈ I ↔ 𝑖 ≠ 𝑗 ) |
15 |
9 14
|
anbi12i |
⊢ ( ( 〈 𝑖 , 𝑗 〉 ∈ ( 𝐴 × 𝐵 ) ∧ ¬ 〈 𝑖 , 𝑗 〉 ∈ I ) ↔ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) |
16 |
8 15
|
bitri |
⊢ ( 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) |
17 |
16
|
anbi2i |
⊢ ( ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) ) |
18 |
17
|
2exbii |
⊢ ( ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ↔ ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) ) |
19 |
|
eldifi |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → 𝑝 ∈ ( 𝐴 × 𝐵 ) ) |
20 |
|
elxpi |
⊢ ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ) ) |
21 |
|
simpl |
⊢ ( ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ) → 𝑝 = 〈 𝑖 , 𝑗 〉 ) |
22 |
21
|
2eximi |
⊢ ( ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ) → ∃ 𝑖 ∃ 𝑗 𝑝 = 〈 𝑖 , 𝑗 〉 ) |
23 |
19 20 22
|
3syl |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ∃ 𝑖 ∃ 𝑗 𝑝 = 〈 𝑖 , 𝑗 〉 ) |
24 |
23
|
ancli |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ ∃ 𝑖 ∃ 𝑗 𝑝 = 〈 𝑖 , 𝑗 〉 ) ) |
25 |
|
19.42vv |
⊢ ( ∃ 𝑖 ∃ 𝑗 ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = 〈 𝑖 , 𝑗 〉 ) ↔ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ ∃ 𝑖 ∃ 𝑗 𝑝 = 〈 𝑖 , 𝑗 〉 ) ) |
26 |
24 25
|
sylibr |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ∃ 𝑖 ∃ 𝑗 ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = 〈 𝑖 , 𝑗 〉 ) ) |
27 |
|
ancom |
⊢ ( ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = 〈 𝑖 , 𝑗 〉 ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) |
28 |
|
eleq1 |
⊢ ( 𝑝 = 〈 𝑖 , 𝑗 〉 → ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) |
29 |
28
|
adantl |
⊢ ( ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = 〈 𝑖 , 𝑗 〉 ) → ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) |
30 |
29
|
pm5.32da |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ( ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) ) |
31 |
27 30
|
bitrid |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ( ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = 〈 𝑖 , 𝑗 〉 ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) ) |
32 |
31
|
2exbidv |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ( ∃ 𝑖 ∃ 𝑗 ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = 〈 𝑖 , 𝑗 〉 ) ↔ ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) ) |
33 |
26 32
|
mpbid |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) |
34 |
28
|
biimpar |
⊢ ( ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) → 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) |
35 |
34
|
exlimivv |
⊢ ( ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) → 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) |
36 |
33 35
|
impbii |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ 〈 𝑖 , 𝑗 〉 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) |
37 |
|
r19.42v |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
38 |
|
simprl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑖 ∈ { 𝑦 } ) |
39 |
|
velsn |
⊢ ( 𝑖 ∈ { 𝑦 } ↔ 𝑖 = 𝑦 ) |
40 |
38 39
|
sylib |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑖 = 𝑦 ) |
41 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑦 ∈ 𝐴 ) |
42 |
40 41
|
eqeltrd |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑖 ∈ 𝐴 ) |
43 |
|
simprr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) |
44 |
43
|
eldifad |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑗 ∈ 𝐵 ) |
45 |
43
|
eldifbd |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → ¬ 𝑗 ∈ { 𝑦 } ) |
46 |
|
velsn |
⊢ ( 𝑗 ∈ { 𝑦 } ↔ 𝑗 = 𝑦 ) |
47 |
46
|
necon3bbii |
⊢ ( ¬ 𝑗 ∈ { 𝑦 } ↔ 𝑗 ≠ 𝑦 ) |
48 |
45 47
|
sylib |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑗 ≠ 𝑦 ) |
49 |
48
|
necomd |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑦 ≠ 𝑗 ) |
50 |
40 49
|
eqnetrd |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑖 ≠ 𝑗 ) |
51 |
42 44 50
|
jca31 |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) |
52 |
51
|
adantll |
⊢ ( ( ( ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ∧ 𝑦 ∈ 𝐴 ) ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) |
53 |
|
sneq |
⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) |
54 |
53
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑖 ∈ { 𝑥 } ↔ 𝑖 ∈ { 𝑦 } ) ) |
55 |
53
|
difeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∖ { 𝑥 } ) = ( 𝐵 ∖ { 𝑦 } ) ) |
56 |
55
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ↔ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) |
57 |
54 56
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) ) |
58 |
57
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑦 ∈ 𝐴 ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) |
59 |
58
|
biimpi |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) → ∃ 𝑦 ∈ 𝐴 ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) |
60 |
52 59
|
r19.29a |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) → ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) |
61 |
|
simpll |
⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → 𝑖 ∈ 𝐴 ) |
62 |
|
vsnid |
⊢ 𝑖 ∈ { 𝑖 } |
63 |
62
|
a1i |
⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → 𝑖 ∈ { 𝑖 } ) |
64 |
|
simplr |
⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → 𝑗 ∈ 𝐵 ) |
65 |
|
simpr |
⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → 𝑖 ≠ 𝑗 ) |
66 |
65
|
necomd |
⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → 𝑗 ≠ 𝑖 ) |
67 |
|
velsn |
⊢ ( 𝑗 ∈ { 𝑖 } ↔ 𝑗 = 𝑖 ) |
68 |
67
|
necon3bbii |
⊢ ( ¬ 𝑗 ∈ { 𝑖 } ↔ 𝑗 ≠ 𝑖 ) |
69 |
66 68
|
sylibr |
⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → ¬ 𝑗 ∈ { 𝑖 } ) |
70 |
64 69
|
eldifd |
⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → 𝑗 ∈ ( 𝐵 ∖ { 𝑖 } ) ) |
71 |
|
sneq |
⊢ ( 𝑥 = 𝑖 → { 𝑥 } = { 𝑖 } ) |
72 |
71
|
eleq2d |
⊢ ( 𝑥 = 𝑖 → ( 𝑖 ∈ { 𝑥 } ↔ 𝑖 ∈ { 𝑖 } ) ) |
73 |
71
|
difeq2d |
⊢ ( 𝑥 = 𝑖 → ( 𝐵 ∖ { 𝑥 } ) = ( 𝐵 ∖ { 𝑖 } ) ) |
74 |
73
|
eleq2d |
⊢ ( 𝑥 = 𝑖 → ( 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ↔ 𝑗 ∈ ( 𝐵 ∖ { 𝑖 } ) ) ) |
75 |
72 74
|
anbi12d |
⊢ ( 𝑥 = 𝑖 → ( ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ( 𝑖 ∈ { 𝑖 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑖 } ) ) ) ) |
76 |
75
|
rspcev |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ ( 𝑖 ∈ { 𝑖 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑖 } ) ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) |
77 |
61 63 70 76
|
syl12anc |
⊢ ( ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) → ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) |
78 |
60 77
|
impbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) |
79 |
78
|
anbi2i |
⊢ ( ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ∃ 𝑥 ∈ 𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) ) |
80 |
37 79
|
bitri |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) ) |
81 |
80
|
2exbii |
⊢ ( ∃ 𝑖 ∃ 𝑗 ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ∃ 𝑖 ∃ 𝑗 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( ( 𝑖 ∈ 𝐴 ∧ 𝑗 ∈ 𝐵 ) ∧ 𝑖 ≠ 𝑗 ) ) ) |
82 |
18 36 81
|
3bitr4i |
⊢ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ ∃ 𝑖 ∃ 𝑗 ∃ 𝑥 ∈ 𝐴 ( 𝑝 = 〈 𝑖 , 𝑗 〉 ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
83 |
6 7 82
|
3bitr4i |
⊢ ( 𝑝 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) |
84 |
83
|
eqriv |
⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) = ( ( 𝐴 × 𝐵 ) ∖ I ) |