Metamath Proof Explorer


Theorem xpdifid

Description: The set of distinct couples in a Cartesian product. (Contributed by Thierry Arnoux, 25-May-2019)

Ref Expression
Assertion xpdifid 𝑥𝐴 ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) = ( ( 𝐴 × 𝐵 ) ∖ I )

Proof

Step Hyp Ref Expression
1 elxp ( 𝑝 ∈ ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑖𝑗 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) )
2 1 rexbii ( ∃ 𝑥𝐴 𝑝 ∈ ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑥𝐴𝑖𝑗 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) )
3 rexcom4 ( ∃ 𝑥𝐴𝑖𝑗 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ∃ 𝑖𝑥𝐴𝑗 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) )
4 rexcom4 ( ∃ 𝑥𝐴𝑗 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ∃ 𝑗𝑥𝐴 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) )
5 4 exbii ( ∃ 𝑖𝑥𝐴𝑗 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ∃ 𝑖𝑗𝑥𝐴 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) )
6 2 3 5 3bitri ( ∃ 𝑥𝐴 𝑝 ∈ ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑖𝑗𝑥𝐴 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) )
7 eliun ( 𝑝 𝑥𝐴 ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑥𝐴 𝑝 ∈ ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) )
8 eldif ( ⟨ 𝑖 , 𝑗 ⟩ ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ ( ⟨ 𝑖 , 𝑗 ⟩ ∈ ( 𝐴 × 𝐵 ) ∧ ¬ ⟨ 𝑖 , 𝑗 ⟩ ∈ I ) )
9 opelxp ( ⟨ 𝑖 , 𝑗 ⟩ ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑖𝐴𝑗𝐵 ) )
10 df-br ( 𝑖 I 𝑗 ↔ ⟨ 𝑖 , 𝑗 ⟩ ∈ I )
11 vex 𝑗 ∈ V
12 11 ideq ( 𝑖 I 𝑗𝑖 = 𝑗 )
13 10 12 bitr3i ( ⟨ 𝑖 , 𝑗 ⟩ ∈ I ↔ 𝑖 = 𝑗 )
14 13 necon3bbii ( ¬ ⟨ 𝑖 , 𝑗 ⟩ ∈ I ↔ 𝑖𝑗 )
15 9 14 anbi12i ( ( ⟨ 𝑖 , 𝑗 ⟩ ∈ ( 𝐴 × 𝐵 ) ∧ ¬ ⟨ 𝑖 , 𝑗 ⟩ ∈ I ) ↔ ( ( 𝑖𝐴𝑗𝐵 ) ∧ 𝑖𝑗 ) )
16 8 15 bitri ( ⟨ 𝑖 , 𝑗 ⟩ ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ ( ( 𝑖𝐴𝑗𝐵 ) ∧ 𝑖𝑗 ) )
17 16 anbi2i ( ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ⟨ 𝑖 , 𝑗 ⟩ ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ↔ ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( ( 𝑖𝐴𝑗𝐵 ) ∧ 𝑖𝑗 ) ) )
18 17 2exbii ( ∃ 𝑖𝑗 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ⟨ 𝑖 , 𝑗 ⟩ ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ↔ ∃ 𝑖𝑗 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( ( 𝑖𝐴𝑗𝐵 ) ∧ 𝑖𝑗 ) ) )
19 eldifi ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → 𝑝 ∈ ( 𝐴 × 𝐵 ) )
20 elxpi ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → ∃ 𝑖𝑗 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( 𝑖𝐴𝑗𝐵 ) ) )
21 simpl ( ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( 𝑖𝐴𝑗𝐵 ) ) → 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ )
22 21 2eximi ( ∃ 𝑖𝑗 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( 𝑖𝐴𝑗𝐵 ) ) → ∃ 𝑖𝑗 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ )
23 19 20 22 3syl ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ∃ 𝑖𝑗 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ )
24 23 ancli ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ ∃ 𝑖𝑗 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ) )
25 19.42vv ( ∃ 𝑖𝑗 ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ) ↔ ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ ∃ 𝑖𝑗 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ) )
26 24 25 sylibr ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ∃ 𝑖𝑗 ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ) )
27 ancom ( ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ) ↔ ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) )
28 eleq1 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ → ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ ⟨ 𝑖 , 𝑗 ⟩ ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) )
29 28 adantl ( ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ) → ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ ⟨ 𝑖 , 𝑗 ⟩ ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) )
30 29 pm5.32da ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ( ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ↔ ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ⟨ 𝑖 , 𝑗 ⟩ ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) )
31 27 30 bitrid ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ( ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ) ↔ ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ⟨ 𝑖 , 𝑗 ⟩ ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) )
32 31 2exbidv ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ( ∃ 𝑖𝑗 ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ∧ 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ) ↔ ∃ 𝑖𝑗 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ⟨ 𝑖 , 𝑗 ⟩ ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) ) )
33 26 32 mpbid ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) → ∃ 𝑖𝑗 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ⟨ 𝑖 , 𝑗 ⟩ ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) )
34 28 biimpar ( ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ⟨ 𝑖 , 𝑗 ⟩ ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) → 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) )
35 34 exlimivv ( ∃ 𝑖𝑗 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ⟨ 𝑖 , 𝑗 ⟩ ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) → 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) )
36 33 35 impbii ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ ∃ 𝑖𝑗 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ⟨ 𝑖 , 𝑗 ⟩ ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ) )
37 r19.42v ( ∃ 𝑥𝐴 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ∃ 𝑥𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) )
38 simprl ( ( 𝑦𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑖 ∈ { 𝑦 } )
39 velsn ( 𝑖 ∈ { 𝑦 } ↔ 𝑖 = 𝑦 )
40 38 39 sylib ( ( 𝑦𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑖 = 𝑦 )
41 simpl ( ( 𝑦𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑦𝐴 )
42 40 41 eqeltrd ( ( 𝑦𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑖𝐴 )
43 simprr ( ( 𝑦𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) )
44 43 eldifad ( ( 𝑦𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑗𝐵 )
45 43 eldifbd ( ( 𝑦𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → ¬ 𝑗 ∈ { 𝑦 } )
46 velsn ( 𝑗 ∈ { 𝑦 } ↔ 𝑗 = 𝑦 )
47 46 necon3bbii ( ¬ 𝑗 ∈ { 𝑦 } ↔ 𝑗𝑦 )
48 45 47 sylib ( ( 𝑦𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑗𝑦 )
49 48 necomd ( ( 𝑦𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑦𝑗 )
50 40 49 eqnetrd ( ( 𝑦𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → 𝑖𝑗 )
51 42 44 50 jca31 ( ( 𝑦𝐴 ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → ( ( 𝑖𝐴𝑗𝐵 ) ∧ 𝑖𝑗 ) )
52 51 adantll ( ( ( ∃ 𝑥𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ∧ 𝑦𝐴 ) ∧ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) → ( ( 𝑖𝐴𝑗𝐵 ) ∧ 𝑖𝑗 ) )
53 sneq ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } )
54 53 eleq2d ( 𝑥 = 𝑦 → ( 𝑖 ∈ { 𝑥 } ↔ 𝑖 ∈ { 𝑦 } ) )
55 53 difeq2d ( 𝑥 = 𝑦 → ( 𝐵 ∖ { 𝑥 } ) = ( 𝐵 ∖ { 𝑦 } ) )
56 55 eleq2d ( 𝑥 = 𝑦 → ( 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ↔ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) )
57 54 56 anbi12d ( 𝑥 = 𝑦 → ( ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) ) )
58 57 cbvrexvw ( ∃ 𝑥𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ∃ 𝑦𝐴 ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) )
59 58 biimpi ( ∃ 𝑥𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) → ∃ 𝑦𝐴 ( 𝑖 ∈ { 𝑦 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑦 } ) ) )
60 52 59 r19.29a ( ∃ 𝑥𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) → ( ( 𝑖𝐴𝑗𝐵 ) ∧ 𝑖𝑗 ) )
61 simpll ( ( ( 𝑖𝐴𝑗𝐵 ) ∧ 𝑖𝑗 ) → 𝑖𝐴 )
62 vsnid 𝑖 ∈ { 𝑖 }
63 62 a1i ( ( ( 𝑖𝐴𝑗𝐵 ) ∧ 𝑖𝑗 ) → 𝑖 ∈ { 𝑖 } )
64 simplr ( ( ( 𝑖𝐴𝑗𝐵 ) ∧ 𝑖𝑗 ) → 𝑗𝐵 )
65 simpr ( ( ( 𝑖𝐴𝑗𝐵 ) ∧ 𝑖𝑗 ) → 𝑖𝑗 )
66 65 necomd ( ( ( 𝑖𝐴𝑗𝐵 ) ∧ 𝑖𝑗 ) → 𝑗𝑖 )
67 velsn ( 𝑗 ∈ { 𝑖 } ↔ 𝑗 = 𝑖 )
68 67 necon3bbii ( ¬ 𝑗 ∈ { 𝑖 } ↔ 𝑗𝑖 )
69 66 68 sylibr ( ( ( 𝑖𝐴𝑗𝐵 ) ∧ 𝑖𝑗 ) → ¬ 𝑗 ∈ { 𝑖 } )
70 64 69 eldifd ( ( ( 𝑖𝐴𝑗𝐵 ) ∧ 𝑖𝑗 ) → 𝑗 ∈ ( 𝐵 ∖ { 𝑖 } ) )
71 sneq ( 𝑥 = 𝑖 → { 𝑥 } = { 𝑖 } )
72 71 eleq2d ( 𝑥 = 𝑖 → ( 𝑖 ∈ { 𝑥 } ↔ 𝑖 ∈ { 𝑖 } ) )
73 71 difeq2d ( 𝑥 = 𝑖 → ( 𝐵 ∖ { 𝑥 } ) = ( 𝐵 ∖ { 𝑖 } ) )
74 73 eleq2d ( 𝑥 = 𝑖 → ( 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ↔ 𝑗 ∈ ( 𝐵 ∖ { 𝑖 } ) ) )
75 72 74 anbi12d ( 𝑥 = 𝑖 → ( ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ( 𝑖 ∈ { 𝑖 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑖 } ) ) ) )
76 75 rspcev ( ( 𝑖𝐴 ∧ ( 𝑖 ∈ { 𝑖 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑖 } ) ) ) → ∃ 𝑥𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) )
77 61 63 70 76 syl12anc ( ( ( 𝑖𝐴𝑗𝐵 ) ∧ 𝑖𝑗 ) → ∃ 𝑥𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) )
78 60 77 impbii ( ∃ 𝑥𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ( ( 𝑖𝐴𝑗𝐵 ) ∧ 𝑖𝑗 ) )
79 78 anbi2i ( ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ∃ 𝑥𝐴 ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( ( 𝑖𝐴𝑗𝐵 ) ∧ 𝑖𝑗 ) ) )
80 37 79 bitri ( ∃ 𝑥𝐴 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( ( 𝑖𝐴𝑗𝐵 ) ∧ 𝑖𝑗 ) ) )
81 80 2exbii ( ∃ 𝑖𝑗𝑥𝐴 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) ↔ ∃ 𝑖𝑗 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( ( 𝑖𝐴𝑗𝐵 ) ∧ 𝑖𝑗 ) ) )
82 18 36 81 3bitr4i ( 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) ↔ ∃ 𝑖𝑗𝑥𝐴 ( 𝑝 = ⟨ 𝑖 , 𝑗 ⟩ ∧ ( 𝑖 ∈ { 𝑥 } ∧ 𝑗 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) )
83 6 7 82 3bitr4i ( 𝑝 𝑥𝐴 ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) ↔ 𝑝 ∈ ( ( 𝐴 × 𝐵 ) ∖ I ) )
84 83 eqriv 𝑥𝐴 ( { 𝑥 } × ( 𝐵 ∖ { 𝑥 } ) ) = ( ( 𝐴 × 𝐵 ) ∖ I )