Step |
Hyp |
Ref |
Expression |
1 |
|
elxp |
|
2 |
1
|
rexbii |
|
3 |
|
rexcom4 |
|
4 |
|
rexcom4 |
|
5 |
4
|
exbii |
|
6 |
2 3 5
|
3bitri |
|
7 |
|
eliun |
|
8 |
|
eldif |
|
9 |
|
opelxp |
|
10 |
|
df-br |
|
11 |
|
vex |
|
12 |
11
|
ideq |
|
13 |
10 12
|
bitr3i |
|
14 |
13
|
necon3bbii |
|
15 |
9 14
|
anbi12i |
|
16 |
8 15
|
bitri |
|
17 |
16
|
anbi2i |
|
18 |
17
|
2exbii |
|
19 |
|
eldifi |
|
20 |
|
elxpi |
|
21 |
|
simpl |
|
22 |
21
|
2eximi |
|
23 |
19 20 22
|
3syl |
|
24 |
23
|
ancli |
|
25 |
|
19.42vv |
|
26 |
24 25
|
sylibr |
|
27 |
|
ancom |
|
28 |
|
eleq1 |
|
29 |
28
|
adantl |
|
30 |
29
|
pm5.32da |
|
31 |
27 30
|
bitrid |
|
32 |
31
|
2exbidv |
|
33 |
26 32
|
mpbid |
|
34 |
28
|
biimpar |
|
35 |
34
|
exlimivv |
|
36 |
33 35
|
impbii |
|
37 |
|
r19.42v |
|
38 |
|
simprl |
|
39 |
|
velsn |
|
40 |
38 39
|
sylib |
|
41 |
|
simpl |
|
42 |
40 41
|
eqeltrd |
|
43 |
|
simprr |
|
44 |
43
|
eldifad |
|
45 |
43
|
eldifbd |
|
46 |
|
velsn |
|
47 |
46
|
necon3bbii |
|
48 |
45 47
|
sylib |
|
49 |
48
|
necomd |
|
50 |
40 49
|
eqnetrd |
|
51 |
42 44 50
|
jca31 |
|
52 |
51
|
adantll |
|
53 |
|
sneq |
|
54 |
53
|
eleq2d |
|
55 |
53
|
difeq2d |
|
56 |
55
|
eleq2d |
|
57 |
54 56
|
anbi12d |
|
58 |
57
|
cbvrexvw |
|
59 |
58
|
biimpi |
|
60 |
52 59
|
r19.29a |
|
61 |
|
simpll |
|
62 |
|
vsnid |
|
63 |
62
|
a1i |
|
64 |
|
simplr |
|
65 |
|
simpr |
|
66 |
65
|
necomd |
|
67 |
|
velsn |
|
68 |
67
|
necon3bbii |
|
69 |
66 68
|
sylibr |
|
70 |
64 69
|
eldifd |
|
71 |
|
sneq |
|
72 |
71
|
eleq2d |
|
73 |
71
|
difeq2d |
|
74 |
73
|
eleq2d |
|
75 |
72 74
|
anbi12d |
|
76 |
75
|
rspcev |
|
77 |
61 63 70 76
|
syl12anc |
|
78 |
60 77
|
impbii |
|
79 |
78
|
anbi2i |
|
80 |
37 79
|
bitri |
|
81 |
80
|
2exbii |
|
82 |
18 36 81
|
3bitr4i |
|
83 |
6 7 82
|
3bitr4i |
|
84 |
83
|
eqriv |
|