Metamath Proof Explorer


Theorem elxpi

Description: Membership in a Cartesian product. Uses fewer axioms than elxp . (Contributed by NM, 4-Jul-1994)

Ref Expression
Assertion elxpi ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐵𝑦𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 eqeq1 ( 𝑧 = 𝑤 → ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ) )
2 1 anbi1d ( 𝑧 = 𝑤 → ( ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐵𝑦𝐶 ) ) ↔ ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐵𝑦𝐶 ) ) ) )
3 2 2exbidv ( 𝑧 = 𝑤 → ( ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐵𝑦𝐶 ) ) ↔ ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐵𝑦𝐶 ) ) ) )
4 eqeq1 ( 𝑤 = 𝐴 → ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ↔ 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ) )
5 4 anbi1d ( 𝑤 = 𝐴 → ( ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐵𝑦𝐶 ) ) ↔ ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐵𝑦𝐶 ) ) ) )
6 5 2exbidv ( 𝑤 = 𝐴 → ( ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐵𝑦𝐶 ) ) ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐵𝑦𝐶 ) ) ) )
7 df-xp ( 𝐵 × 𝐶 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦𝐶 ) }
8 df-opab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦𝐶 ) } = { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐵𝑦𝐶 ) ) }
9 7 8 eqtri ( 𝐵 × 𝐶 ) = { 𝑧 ∣ ∃ 𝑥𝑦 ( 𝑧 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐵𝑦𝐶 ) ) }
10 3 6 9 elab2gw ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐵𝑦𝐶 ) ) ) )
11 10 ibi ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → ∃ 𝑥𝑦 ( 𝐴 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐵𝑦𝐶 ) ) )