Metamath Proof Explorer


Theorem difxp1

Description: Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013) (Revised by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion difxp1 AB×C=A×CB×C

Proof

Step Hyp Ref Expression
1 difxp A×CB×C=AB×CA×CC
2 difid CC=
3 2 xpeq2i A×CC=A×
4 xp0 A×=
5 3 4 eqtri A×CC=
6 5 uneq2i AB×CA×CC=AB×C
7 un0 AB×C=AB×C
8 1 6 7 3eqtrri AB×C=A×CB×C