Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A e. V /\ B C_ A /\ B ~<_ _om ) -> A e. V ) |
2 |
1
|
sgsiga |
|- ( ( A e. V /\ B C_ A /\ B ~<_ _om ) -> ( sigaGen ` A ) e. U. ran sigAlgebra ) |
3 |
|
sssigagen |
|- ( A e. V -> A C_ ( sigaGen ` A ) ) |
4 |
|
sspw |
|- ( A C_ ( sigaGen ` A ) -> ~P A C_ ~P ( sigaGen ` A ) ) |
5 |
1 3 4
|
3syl |
|- ( ( A e. V /\ B C_ A /\ B ~<_ _om ) -> ~P A C_ ~P ( sigaGen ` A ) ) |
6 |
|
simp2 |
|- ( ( A e. V /\ B C_ A /\ B ~<_ _om ) -> B C_ A ) |
7 |
|
simp3 |
|- ( ( A e. V /\ B C_ A /\ B ~<_ _om ) -> B ~<_ _om ) |
8 |
|
ctex |
|- ( B ~<_ _om -> B e. _V ) |
9 |
|
elpwg |
|- ( B e. _V -> ( B e. ~P A <-> B C_ A ) ) |
10 |
7 8 9
|
3syl |
|- ( ( A e. V /\ B C_ A /\ B ~<_ _om ) -> ( B e. ~P A <-> B C_ A ) ) |
11 |
6 10
|
mpbird |
|- ( ( A e. V /\ B C_ A /\ B ~<_ _om ) -> B e. ~P A ) |
12 |
5 11
|
sseldd |
|- ( ( A e. V /\ B C_ A /\ B ~<_ _om ) -> B e. ~P ( sigaGen ` A ) ) |
13 |
|
sigaclcu |
|- ( ( ( sigaGen ` A ) e. U. ran sigAlgebra /\ B e. ~P ( sigaGen ` A ) /\ B ~<_ _om ) -> U. B e. ( sigaGen ` A ) ) |
14 |
2 12 7 13
|
syl3anc |
|- ( ( A e. V /\ B C_ A /\ B ~<_ _om ) -> U. B e. ( sigaGen ` A ) ) |