Metamath Proof Explorer


Theorem elsigagen2

Description: Any countable union of elements of a set is also in the sigma-algebra that set generates. (Contributed by Thierry Arnoux, 17-Sep-2017)

Ref Expression
Assertion elsigagen2
|- ( ( A e. V /\ B C_ A /\ B ~<_ _om ) -> U. B e. ( sigaGen ` A ) )

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( A e. V /\ B C_ A /\ B ~<_ _om ) -> A e. V )
2 1 sgsiga
 |-  ( ( A e. V /\ B C_ A /\ B ~<_ _om ) -> ( sigaGen ` A ) e. U. ran sigAlgebra )
3 sssigagen
 |-  ( A e. V -> A C_ ( sigaGen ` A ) )
4 sspw
 |-  ( A C_ ( sigaGen ` A ) -> ~P A C_ ~P ( sigaGen ` A ) )
5 1 3 4 3syl
 |-  ( ( A e. V /\ B C_ A /\ B ~<_ _om ) -> ~P A C_ ~P ( sigaGen ` A ) )
6 simp2
 |-  ( ( A e. V /\ B C_ A /\ B ~<_ _om ) -> B C_ A )
7 simp3
 |-  ( ( A e. V /\ B C_ A /\ B ~<_ _om ) -> B ~<_ _om )
8 ctex
 |-  ( B ~<_ _om -> B e. _V )
9 elpwg
 |-  ( B e. _V -> ( B e. ~P A <-> B C_ A ) )
10 7 8 9 3syl
 |-  ( ( A e. V /\ B C_ A /\ B ~<_ _om ) -> ( B e. ~P A <-> B C_ A ) )
11 6 10 mpbird
 |-  ( ( A e. V /\ B C_ A /\ B ~<_ _om ) -> B e. ~P A )
12 5 11 sseldd
 |-  ( ( A e. V /\ B C_ A /\ B ~<_ _om ) -> B e. ~P ( sigaGen ` A ) )
13 sigaclcu
 |-  ( ( ( sigaGen ` A ) e. U. ran sigAlgebra /\ B e. ~P ( sigaGen ` A ) /\ B ~<_ _om ) -> U. B e. ( sigaGen ` A ) )
14 2 12 7 13 syl3anc
 |-  ( ( A e. V /\ B C_ A /\ B ~<_ _om ) -> U. B e. ( sigaGen ` A ) )