Metamath Proof Explorer


Theorem sigagenss

Description: The generated sigma-algebra is a subset of all sigma-algebras containing the generating set, i.e. the generated sigma-algebra is the smallest sigma-algebra containing the generating set, here A . (Contributed by Thierry Arnoux, 4-Jun-2017)

Ref Expression
Assertion sigagenss
|- ( ( S e. ( sigAlgebra ` U. A ) /\ A C_ S ) -> ( sigaGen ` A ) C_ S )

Proof

Step Hyp Ref Expression
1 ssexg
 |-  ( ( A C_ S /\ S e. ( sigAlgebra ` U. A ) ) -> A e. _V )
2 1 ancoms
 |-  ( ( S e. ( sigAlgebra ` U. A ) /\ A C_ S ) -> A e. _V )
3 sigagenval
 |-  ( A e. _V -> ( sigaGen ` A ) = |^| { s e. ( sigAlgebra ` U. A ) | A C_ s } )
4 2 3 syl
 |-  ( ( S e. ( sigAlgebra ` U. A ) /\ A C_ S ) -> ( sigaGen ` A ) = |^| { s e. ( sigAlgebra ` U. A ) | A C_ s } )
5 sseq2
 |-  ( s = S -> ( A C_ s <-> A C_ S ) )
6 5 intminss
 |-  ( ( S e. ( sigAlgebra ` U. A ) /\ A C_ S ) -> |^| { s e. ( sigAlgebra ` U. A ) | A C_ s } C_ S )
7 4 6 eqsstrd
 |-  ( ( S e. ( sigAlgebra ` U. A ) /\ A C_ S ) -> ( sigaGen ` A ) C_ S )