Step |
Hyp |
Ref |
Expression |
1 |
|
ssexg |
|- ( ( A C_ S /\ S e. ( sigAlgebra ` U. A ) ) -> A e. _V ) |
2 |
1
|
ancoms |
|- ( ( S e. ( sigAlgebra ` U. A ) /\ A C_ S ) -> A e. _V ) |
3 |
|
sigagenval |
|- ( A e. _V -> ( sigaGen ` A ) = |^| { s e. ( sigAlgebra ` U. A ) | A C_ s } ) |
4 |
2 3
|
syl |
|- ( ( S e. ( sigAlgebra ` U. A ) /\ A C_ S ) -> ( sigaGen ` A ) = |^| { s e. ( sigAlgebra ` U. A ) | A C_ s } ) |
5 |
|
sseq2 |
|- ( s = S -> ( A C_ s <-> A C_ S ) ) |
6 |
5
|
intminss |
|- ( ( S e. ( sigAlgebra ` U. A ) /\ A C_ S ) -> |^| { s e. ( sigAlgebra ` U. A ) | A C_ s } C_ S ) |
7 |
4 6
|
eqsstrd |
|- ( ( S e. ( sigAlgebra ` U. A ) /\ A C_ S ) -> ( sigaGen ` A ) C_ S ) |