Metamath Proof Explorer


Theorem elsigagen2

Description: Any countable union of elements of a set is also in the sigma-algebra that set generates. (Contributed by Thierry Arnoux, 17-Sep-2017)

Ref Expression
Assertion elsigagen2 ( ( 𝐴𝑉𝐵𝐴𝐵 ≼ ω ) → 𝐵 ∈ ( sigaGen ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴𝑉𝐵𝐴𝐵 ≼ ω ) → 𝐴𝑉 )
2 1 sgsiga ( ( 𝐴𝑉𝐵𝐴𝐵 ≼ ω ) → ( sigaGen ‘ 𝐴 ) ∈ ran sigAlgebra )
3 sssigagen ( 𝐴𝑉𝐴 ⊆ ( sigaGen ‘ 𝐴 ) )
4 sspw ( 𝐴 ⊆ ( sigaGen ‘ 𝐴 ) → 𝒫 𝐴 ⊆ 𝒫 ( sigaGen ‘ 𝐴 ) )
5 1 3 4 3syl ( ( 𝐴𝑉𝐵𝐴𝐵 ≼ ω ) → 𝒫 𝐴 ⊆ 𝒫 ( sigaGen ‘ 𝐴 ) )
6 simp2 ( ( 𝐴𝑉𝐵𝐴𝐵 ≼ ω ) → 𝐵𝐴 )
7 simp3 ( ( 𝐴𝑉𝐵𝐴𝐵 ≼ ω ) → 𝐵 ≼ ω )
8 ctex ( 𝐵 ≼ ω → 𝐵 ∈ V )
9 elpwg ( 𝐵 ∈ V → ( 𝐵 ∈ 𝒫 𝐴𝐵𝐴 ) )
10 7 8 9 3syl ( ( 𝐴𝑉𝐵𝐴𝐵 ≼ ω ) → ( 𝐵 ∈ 𝒫 𝐴𝐵𝐴 ) )
11 6 10 mpbird ( ( 𝐴𝑉𝐵𝐴𝐵 ≼ ω ) → 𝐵 ∈ 𝒫 𝐴 )
12 5 11 sseldd ( ( 𝐴𝑉𝐵𝐴𝐵 ≼ ω ) → 𝐵 ∈ 𝒫 ( sigaGen ‘ 𝐴 ) )
13 sigaclcu ( ( ( sigaGen ‘ 𝐴 ) ∈ ran sigAlgebra ∧ 𝐵 ∈ 𝒫 ( sigaGen ‘ 𝐴 ) ∧ 𝐵 ≼ ω ) → 𝐵 ∈ ( sigaGen ‘ 𝐴 ) )
14 2 12 7 13 syl3anc ( ( 𝐴𝑉𝐵𝐴𝐵 ≼ ω ) → 𝐵 ∈ ( sigaGen ‘ 𝐴 ) )