Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω ) → 𝐴 ∈ 𝑉 ) |
2 |
1
|
sgsiga |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω ) → ( sigaGen ‘ 𝐴 ) ∈ ∪ ran sigAlgebra ) |
3 |
|
sssigagen |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ( sigaGen ‘ 𝐴 ) ) |
4 |
|
sspw |
⊢ ( 𝐴 ⊆ ( sigaGen ‘ 𝐴 ) → 𝒫 𝐴 ⊆ 𝒫 ( sigaGen ‘ 𝐴 ) ) |
5 |
1 3 4
|
3syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω ) → 𝒫 𝐴 ⊆ 𝒫 ( sigaGen ‘ 𝐴 ) ) |
6 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω ) → 𝐵 ⊆ 𝐴 ) |
7 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω ) → 𝐵 ≼ ω ) |
8 |
|
ctex |
⊢ ( 𝐵 ≼ ω → 𝐵 ∈ V ) |
9 |
|
elpwg |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) |
10 |
7 8 9
|
3syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω ) → ( 𝐵 ∈ 𝒫 𝐴 ↔ 𝐵 ⊆ 𝐴 ) ) |
11 |
6 10
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω ) → 𝐵 ∈ 𝒫 𝐴 ) |
12 |
5 11
|
sseldd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω ) → 𝐵 ∈ 𝒫 ( sigaGen ‘ 𝐴 ) ) |
13 |
|
sigaclcu |
⊢ ( ( ( sigaGen ‘ 𝐴 ) ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝒫 ( sigaGen ‘ 𝐴 ) ∧ 𝐵 ≼ ω ) → ∪ 𝐵 ∈ ( sigaGen ‘ 𝐴 ) ) |
14 |
2 12 7 13
|
syl3anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≼ ω ) → ∪ 𝐵 ∈ ( sigaGen ‘ 𝐴 ) ) |