Metamath Proof Explorer


Theorem txtopi

Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 15-Jun-2010)

Ref Expression
Hypotheses txtopi.1 𝑅 ∈ Top
txtopi.2 𝑆 ∈ Top
Assertion txtopi ( 𝑅 ×t 𝑆 ) ∈ Top

Proof

Step Hyp Ref Expression
1 txtopi.1 𝑅 ∈ Top
2 txtopi.2 𝑆 ∈ Top
3 txtop ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top )
4 1 2 3 mp2an ( 𝑅 ×t 𝑆 ) ∈ Top