| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sxbrsiga.0 |
|- J = ( topGen ` ran (,) ) |
| 2 |
|
dya2ioc.1 |
|- I = ( x e. ZZ , n e. ZZ |-> ( ( x / ( 2 ^ n ) ) [,) ( ( x + 1 ) / ( 2 ^ n ) ) ) ) |
| 3 |
|
dya2ioc.2 |
|- R = ( u e. ran I , v e. ran I |-> ( u X. v ) ) |
| 4 |
|
elunii |
|- ( ( X e. A /\ A e. ( J tX J ) ) -> X e. U. ( J tX J ) ) |
| 5 |
4
|
ancoms |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> X e. U. ( J tX J ) ) |
| 6 |
1
|
tpr2uni |
|- U. ( J tX J ) = ( RR X. RR ) |
| 7 |
5 6
|
eleqtrdi |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> X e. ( RR X. RR ) ) |
| 8 |
|
eqid |
|- ( u e. RR , v e. RR |-> ( u + ( _i x. v ) ) ) = ( u e. RR , v e. RR |-> ( u + ( _i x. v ) ) ) |
| 9 |
|
eqid |
|- ran ( e e. ran (,) , f e. ran (,) |-> ( e X. f ) ) = ran ( e e. ran (,) , f e. ran (,) |-> ( e X. f ) ) |
| 10 |
1 8 9
|
tpr2rico |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> E. r e. ran ( e e. ran (,) , f e. ran (,) |-> ( e X. f ) ) ( X e. r /\ r C_ A ) ) |
| 11 |
|
anass |
|- ( ( ( r e. ran ( e e. ran (,) , f e. ran (,) |-> ( e X. f ) ) /\ X e. r ) /\ r C_ A ) <-> ( r e. ran ( e e. ran (,) , f e. ran (,) |-> ( e X. f ) ) /\ ( X e. r /\ r C_ A ) ) ) |
| 12 |
1 2 3 9
|
dya2iocnrect |
|- ( ( X e. ( RR X. RR ) /\ r e. ran ( e e. ran (,) , f e. ran (,) |-> ( e X. f ) ) /\ X e. r ) -> E. b e. ran R ( X e. b /\ b C_ r ) ) |
| 13 |
12
|
3expb |
|- ( ( X e. ( RR X. RR ) /\ ( r e. ran ( e e. ran (,) , f e. ran (,) |-> ( e X. f ) ) /\ X e. r ) ) -> E. b e. ran R ( X e. b /\ b C_ r ) ) |
| 14 |
13
|
anim1i |
|- ( ( ( X e. ( RR X. RR ) /\ ( r e. ran ( e e. ran (,) , f e. ran (,) |-> ( e X. f ) ) /\ X e. r ) ) /\ r C_ A ) -> ( E. b e. ran R ( X e. b /\ b C_ r ) /\ r C_ A ) ) |
| 15 |
14
|
anasss |
|- ( ( X e. ( RR X. RR ) /\ ( ( r e. ran ( e e. ran (,) , f e. ran (,) |-> ( e X. f ) ) /\ X e. r ) /\ r C_ A ) ) -> ( E. b e. ran R ( X e. b /\ b C_ r ) /\ r C_ A ) ) |
| 16 |
11 15
|
sylan2br |
|- ( ( X e. ( RR X. RR ) /\ ( r e. ran ( e e. ran (,) , f e. ran (,) |-> ( e X. f ) ) /\ ( X e. r /\ r C_ A ) ) ) -> ( E. b e. ran R ( X e. b /\ b C_ r ) /\ r C_ A ) ) |
| 17 |
|
r19.41v |
|- ( E. b e. ran R ( ( X e. b /\ b C_ r ) /\ r C_ A ) <-> ( E. b e. ran R ( X e. b /\ b C_ r ) /\ r C_ A ) ) |
| 18 |
|
simpll |
|- ( ( ( X e. b /\ b C_ r ) /\ r C_ A ) -> X e. b ) |
| 19 |
|
simplr |
|- ( ( ( X e. b /\ b C_ r ) /\ r C_ A ) -> b C_ r ) |
| 20 |
|
simpr |
|- ( ( ( X e. b /\ b C_ r ) /\ r C_ A ) -> r C_ A ) |
| 21 |
19 20
|
sstrd |
|- ( ( ( X e. b /\ b C_ r ) /\ r C_ A ) -> b C_ A ) |
| 22 |
18 21
|
jca |
|- ( ( ( X e. b /\ b C_ r ) /\ r C_ A ) -> ( X e. b /\ b C_ A ) ) |
| 23 |
22
|
reximi |
|- ( E. b e. ran R ( ( X e. b /\ b C_ r ) /\ r C_ A ) -> E. b e. ran R ( X e. b /\ b C_ A ) ) |
| 24 |
17 23
|
sylbir |
|- ( ( E. b e. ran R ( X e. b /\ b C_ r ) /\ r C_ A ) -> E. b e. ran R ( X e. b /\ b C_ A ) ) |
| 25 |
16 24
|
syl |
|- ( ( X e. ( RR X. RR ) /\ ( r e. ran ( e e. ran (,) , f e. ran (,) |-> ( e X. f ) ) /\ ( X e. r /\ r C_ A ) ) ) -> E. b e. ran R ( X e. b /\ b C_ A ) ) |
| 26 |
25
|
rexlimdvaa |
|- ( X e. ( RR X. RR ) -> ( E. r e. ran ( e e. ran (,) , f e. ran (,) |-> ( e X. f ) ) ( X e. r /\ r C_ A ) -> E. b e. ran R ( X e. b /\ b C_ A ) ) ) |
| 27 |
7 10 26
|
sylc |
|- ( ( A e. ( J tX J ) /\ X e. A ) -> E. b e. ran R ( X e. b /\ b C_ A ) ) |