| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sxbrsiga.0 |
|
| 2 |
|
dya2ioc.1 |
|
| 3 |
|
dya2ioc.2 |
|
| 4 |
|
dya2iocnrect.1 |
|
| 5 |
4
|
eleq2i |
|
| 6 |
|
eqid |
|
| 7 |
|
vex |
|
| 8 |
|
vex |
|
| 9 |
7 8
|
xpex |
|
| 10 |
6 9
|
elrnmpo |
|
| 11 |
5 10
|
sylbb |
|
| 12 |
11
|
3ad2ant2 |
|
| 13 |
|
simp1 |
|
| 14 |
|
simp3 |
|
| 15 |
12 13 14
|
jca32 |
|
| 16 |
|
r19.41vv |
|
| 17 |
16
|
biimpri |
|
| 18 |
|
simprl |
|
| 19 |
|
simpl |
|
| 20 |
|
simprr |
|
| 21 |
20 19
|
eleqtrd |
|
| 22 |
18 19 21
|
3jca |
|
| 23 |
|
simpr |
|
| 24 |
|
xp1st |
|
| 25 |
24
|
3ad2ant1 |
|
| 26 |
25
|
adantl |
|
| 27 |
|
simpll |
|
| 28 |
|
xp1st |
|
| 29 |
28
|
3ad2ant3 |
|
| 30 |
29
|
adantl |
|
| 31 |
1 2
|
dya2icoseg2 |
|
| 32 |
26 27 30 31
|
syl3anc |
|
| 33 |
|
xp2nd |
|
| 34 |
33
|
3ad2ant1 |
|
| 35 |
34
|
adantl |
|
| 36 |
|
simplr |
|
| 37 |
|
xp2nd |
|
| 38 |
37
|
3ad2ant3 |
|
| 39 |
38
|
adantl |
|
| 40 |
1 2
|
dya2icoseg2 |
|
| 41 |
35 36 39 40
|
syl3anc |
|
| 42 |
|
reeanv |
|
| 43 |
32 41 42
|
sylanbrc |
|
| 44 |
|
eqid |
|
| 45 |
|
xpeq1 |
|
| 46 |
45
|
eqeq2d |
|
| 47 |
|
xpeq2 |
|
| 48 |
47
|
eqeq2d |
|
| 49 |
46 48
|
rspc2ev |
|
| 50 |
44 49
|
mp3an3 |
|
| 51 |
|
vex |
|
| 52 |
|
vex |
|
| 53 |
51 52
|
xpex |
|
| 54 |
3 53
|
elrnmpo |
|
| 55 |
50 54
|
sylibr |
|
| 56 |
55
|
ad2antrl |
|
| 57 |
|
xpss |
|
| 58 |
|
simpl1 |
|
| 59 |
57 58
|
sselid |
|
| 60 |
|
simprrl |
|
| 61 |
60
|
simpld |
|
| 62 |
|
simprrr |
|
| 63 |
62
|
simpld |
|
| 64 |
|
elxp7 |
|
| 65 |
64
|
biimpri |
|
| 66 |
59 61 63 65
|
syl12anc |
|
| 67 |
60
|
simprd |
|
| 68 |
62
|
simprd |
|
| 69 |
|
xpss12 |
|
| 70 |
67 68 69
|
syl2anc |
|
| 71 |
|
simpl2 |
|
| 72 |
70 71
|
sseqtrrd |
|
| 73 |
|
eleq2 |
|
| 74 |
|
sseq1 |
|
| 75 |
73 74
|
anbi12d |
|
| 76 |
75
|
rspcev |
|
| 77 |
56 66 72 76
|
syl12anc |
|
| 78 |
77
|
exp32 |
|
| 79 |
78
|
rexlimdvv |
|
| 80 |
23 43 79
|
sylc |
|
| 81 |
22 80
|
sylan2 |
|
| 82 |
81
|
ex |
|
| 83 |
82
|
rexlimivv |
|
| 84 |
15 17 83
|
3syl |
|