Metamath Proof Explorer


Theorem e333

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e333.1 φ,ψ,χθ
e333.2 φ,ψ,χτ
e333.3 φ,ψ,χη
e333.4 θτηζ
Assertion e333 φ,ψ,χζ

Proof

Step Hyp Ref Expression
1 e333.1 φ,ψ,χθ
2 e333.2 φ,ψ,χτ
3 e333.3 φ,ψ,χη
4 e333.4 θτηζ
5 3 dfvd3i φψχη
6 5 3imp φψχη
7 1 dfvd3i φψχθ
8 7 3imp φψχθ
9 2 dfvd3i φψχτ
10 9 3imp φψχτ
11 8 10 4 syl2im φψχφψχηζ
12 11 pm2.43i φψχηζ
13 6 12 syl5com φψχφψχζ
14 13 pm2.43i φψχζ
15 14 3exp φψχζ
16 15 dfvd3ir φ,ψ,χζ