Metamath Proof Explorer


Theorem ecelqsdm

Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 30-Jul-1995)

Ref Expression
Assertion ecelqsdm domR=ABRA/RBA

Proof

Step Hyp Ref Expression
1 elqsn0 domR=ABRA/RBR
2 ecdmn0 BdomRBR
3 1 2 sylibr domR=ABRA/RBdomR
4 simpl domR=ABRA/RdomR=A
5 3 4 eleqtrd domR=ABRA/RBA