Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 30-Jul-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecelqsdm | |- ( ( dom R = A /\ [ B ] R e. ( A /. R ) ) -> B e. A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elqsn0 | |- ( ( dom R = A /\ [ B ] R e. ( A /. R ) ) -> [ B ] R =/= (/) ) | |
| 2 | ecdmn0 | |- ( B e. dom R <-> [ B ] R =/= (/) ) | |
| 3 | 1 2 | sylibr | |- ( ( dom R = A /\ [ B ] R e. ( A /. R ) ) -> B e. dom R ) | 
| 4 | simpl | |- ( ( dom R = A /\ [ B ] R e. ( A /. R ) ) -> dom R = A ) | |
| 5 | 3 4 | eleqtrd | |- ( ( dom R = A /\ [ B ] R e. ( A /. R ) ) -> B e. A ) |