Metamath Proof Explorer


Theorem ecelqsdmb

Description: R -coset of B in a quotient set, biconditional version. (Contributed by Peter Mazsa, 17-Apr-2019) (Revised by Peter Mazsa, 22-Nov-2025)

Ref Expression
Assertion ecelqsdmb
|- ( ( ( R |` A ) e. V /\ dom R = A ) -> ( [ B ] R e. ( A /. R ) <-> B e. A ) )

Proof

Step Hyp Ref Expression
1 ecelqsdm
 |-  ( ( dom R = A /\ [ B ] R e. ( A /. R ) ) -> B e. A )
2 1 ex
 |-  ( dom R = A -> ( [ B ] R e. ( A /. R ) -> B e. A ) )
3 2 adantl
 |-  ( ( ( R |` A ) e. V /\ dom R = A ) -> ( [ B ] R e. ( A /. R ) -> B e. A ) )
4 ecelqs
 |-  ( ( ( R |` A ) e. V /\ B e. A ) -> [ B ] R e. ( A /. R ) )
5 4 ex
 |-  ( ( R |` A ) e. V -> ( B e. A -> [ B ] R e. ( A /. R ) ) )
6 5 adantr
 |-  ( ( ( R |` A ) e. V /\ dom R = A ) -> ( B e. A -> [ B ] R e. ( A /. R ) ) )
7 3 6 impbid
 |-  ( ( ( R |` A ) e. V /\ dom R = A ) -> ( [ B ] R e. ( A /. R ) <-> B e. A ) )