| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ecelqsdm |
|- ( ( dom R = A /\ [ B ] R e. ( A /. R ) ) -> B e. A ) |
| 2 |
1
|
ex |
|- ( dom R = A -> ( [ B ] R e. ( A /. R ) -> B e. A ) ) |
| 3 |
2
|
adantl |
|- ( ( ( R |` A ) e. V /\ dom R = A ) -> ( [ B ] R e. ( A /. R ) -> B e. A ) ) |
| 4 |
|
ecelqs |
|- ( ( ( R |` A ) e. V /\ B e. A ) -> [ B ] R e. ( A /. R ) ) |
| 5 |
4
|
ex |
|- ( ( R |` A ) e. V -> ( B e. A -> [ B ] R e. ( A /. R ) ) ) |
| 6 |
5
|
adantr |
|- ( ( ( R |` A ) e. V /\ dom R = A ) -> ( B e. A -> [ B ] R e. ( A /. R ) ) ) |
| 7 |
3 6
|
impbid |
|- ( ( ( R |` A ) e. V /\ dom R = A ) -> ( [ B ] R e. ( A /. R ) <-> B e. A ) ) |