Metamath Proof Explorer


Theorem ecelqsdmb

Description: R -coset of B in a quotient set, biconditional version. (Contributed by Peter Mazsa, 17-Apr-2019) (Revised by Peter Mazsa, 22-Nov-2025)

Ref Expression
Assertion ecelqsdmb R A V dom R = A B R A / R B A

Proof

Step Hyp Ref Expression
1 ecelqsdm dom R = A B R A / R B A
2 1 ex dom R = A B R A / R B A
3 2 adantl R A V dom R = A B R A / R B A
4 ecelqs R A V B A B R A / R
5 4 ex R A V B A B R A / R
6 5 adantr R A V dom R = A B A B R A / R
7 3 6 impbid R A V dom R = A B R A / R B A