| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ecelqsdm |
⊢ ( ( dom 𝑅 = 𝐴 ∧ [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) → 𝐵 ∈ 𝐴 ) |
| 2 |
1
|
ex |
⊢ ( dom 𝑅 = 𝐴 → ( [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) → 𝐵 ∈ 𝐴 ) ) |
| 3 |
2
|
adantl |
⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 ∧ dom 𝑅 = 𝐴 ) → ( [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) → 𝐵 ∈ 𝐴 ) ) |
| 4 |
|
ecelqs |
⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 ∧ 𝐵 ∈ 𝐴 ) → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) |
| 5 |
4
|
ex |
⊢ ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 → ( 𝐵 ∈ 𝐴 → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) ) |
| 6 |
5
|
adantr |
⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 ∧ dom 𝑅 = 𝐴 ) → ( 𝐵 ∈ 𝐴 → [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ) ) |
| 7 |
3 6
|
impbid |
⊢ ( ( ( 𝑅 ↾ 𝐴 ) ∈ 𝑉 ∧ dom 𝑅 = 𝐴 ) → ( [ 𝐵 ] 𝑅 ∈ ( 𝐴 / 𝑅 ) ↔ 𝐵 ∈ 𝐴 ) ) |