Metamath Proof Explorer


Theorem eceldmqs

Description: R -coset in its domain quotient. This is the bridge between A in the domain and its block [ A ] R in its domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019) (Revised by Peter Mazsa, 22-Nov-2025)

Ref Expression
Assertion eceldmqs ( 𝑅𝑉 → ( [ 𝐴 ] 𝑅 ∈ ( dom 𝑅 / 𝑅 ) ↔ 𝐴 ∈ dom 𝑅 ) )

Proof

Step Hyp Ref Expression
1 resexg ( 𝑅𝑉 → ( 𝑅 ↾ dom 𝑅 ) ∈ V )
2 eqid dom 𝑅 = dom 𝑅
3 ecelqsdmb ( ( ( 𝑅 ↾ dom 𝑅 ) ∈ V ∧ dom 𝑅 = dom 𝑅 ) → ( [ 𝐴 ] 𝑅 ∈ ( dom 𝑅 / 𝑅 ) ↔ 𝐴 ∈ dom 𝑅 ) )
4 1 2 3 sylancl ( 𝑅𝑉 → ( [ 𝐴 ] 𝑅 ∈ ( dom 𝑅 / 𝑅 ) ↔ 𝐴 ∈ dom 𝑅 ) )