| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relxp |
⊢ Rel ( 𝐴 × 𝐴 ) |
| 2 |
|
dmxpid |
⊢ dom ( 𝐴 × 𝐴 ) = 𝐴 |
| 3 |
|
cnvxp |
⊢ ◡ ( 𝐴 × 𝐴 ) = ( 𝐴 × 𝐴 ) |
| 4 |
|
xpidtr |
⊢ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) |
| 5 |
|
uneq1 |
⊢ ( ◡ ( 𝐴 × 𝐴 ) = ( 𝐴 × 𝐴 ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) ) |
| 6 |
|
unss2 |
⊢ ( ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) ) |
| 7 |
|
unidm |
⊢ ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) |
| 8 |
|
eqtr |
⊢ ( ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) ∧ ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) ) |
| 9 |
|
sseq2 |
⊢ ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) → ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) ↔ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) |
| 10 |
9
|
biimpd |
⊢ ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) → ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) |
| 11 |
8 10
|
syl |
⊢ ( ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) ∧ ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( 𝐴 × 𝐴 ) ) → ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) |
| 12 |
7 11
|
mpan2 |
⊢ ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) → ( ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( 𝐴 × 𝐴 ) ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) |
| 13 |
5 6 12
|
syl2im |
⊢ ( ◡ ( 𝐴 × 𝐴 ) = ( 𝐴 × 𝐴 ) → ( ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) → ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) |
| 14 |
3 4 13
|
mp2 |
⊢ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) |
| 15 |
|
df-er |
⊢ ( ( 𝐴 × 𝐴 ) Er 𝐴 ↔ ( Rel ( 𝐴 × 𝐴 ) ∧ dom ( 𝐴 × 𝐴 ) = 𝐴 ∧ ( ◡ ( 𝐴 × 𝐴 ) ∪ ( ( 𝐴 × 𝐴 ) ∘ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝐴 × 𝐴 ) ) ) |
| 16 |
1 2 14 15
|
mpbir3an |
⊢ ( 𝐴 × 𝐴 ) Er 𝐴 |