Metamath Proof Explorer


Theorem eceldmqs

Description: R -coset in its domain quotient. This is the bridge between A in the domain and its block [ A ] R in its domain quotient. (Contributed by Peter Mazsa, 17-Apr-2019) (Revised by Peter Mazsa, 22-Nov-2025)

Ref Expression
Assertion eceldmqs
|- ( R e. V -> ( [ A ] R e. ( dom R /. R ) <-> A e. dom R ) )

Proof

Step Hyp Ref Expression
1 resexg
 |-  ( R e. V -> ( R |` dom R ) e. _V )
2 eqid
 |-  dom R = dom R
3 ecelqsdmb
 |-  ( ( ( R |` dom R ) e. _V /\ dom R = dom R ) -> ( [ A ] R e. ( dom R /. R ) <-> A e. dom R ) )
4 1 2 3 sylancl
 |-  ( R e. V -> ( [ A ] R e. ( dom R /. R ) <-> A e. dom R ) )