Metamath Proof Explorer


Theorem ecex2

Description: Condition for a coset to be a set. (Contributed by Peter Mazsa, 4-May-2019)

Ref Expression
Assertion ecex2 RAVBABRV

Proof

Step Hyp Ref Expression
1 ecexg RAVBRAV
2 ecres2 BABRA=BR
3 2 eleq1d BABRAVBRV
4 1 3 syl5ibcom RAVBABRV