Metamath Proof Explorer


Theorem ecopqsi

Description: "Closure" law for equivalence class of ordered pairs. (Contributed by NM, 25-Mar-1996)

Ref Expression
Hypotheses ecopqsi.1 RV
ecopqsi.2 S=A×A/R
Assertion ecopqsi BACABCRS

Proof

Step Hyp Ref Expression
1 ecopqsi.1 RV
2 ecopqsi.2 S=A×A/R
3 opelxpi BACABCA×A
4 1 ecelqsi BCA×ABCRA×A/R
5 4 2 eleqtrrdi BCA×ABCRS
6 3 5 syl BACABCRS