Metamath Proof Explorer


Theorem ecref

Description: All elements are in their own equivalence class. (Contributed by Thierry Arnoux, 14-Feb-2025)

Ref Expression
Assertion ecref RErXAXAAR

Proof

Step Hyp Ref Expression
1 simpl RErXAXRErX
2 simpr RErXAXAX
3 1 2 erref RErXAXARA
4 elecg AXAXAARARA
5 2 4 sylancom RErXAXAARARA
6 3 5 mpbird RErXAXAAR