Metamath Proof Explorer


Theorem edgusgrnbfin

Description: The number of neighbors of a vertex in a simple graph is finite iff the number of edges having this vertex as endpoint is finite. (Contributed by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 28-Oct-2020)

Ref Expression
Hypotheses nbusgrf1o.v V = Vtx G
nbusgrf1o.e E = Edg G
Assertion edgusgrnbfin G USGraph U V G NeighbVtx U Fin e E | U e Fin

Proof

Step Hyp Ref Expression
1 nbusgrf1o.v V = Vtx G
2 nbusgrf1o.e E = Edg G
3 1 2 nbusgrf1o G USGraph U V f f : G NeighbVtx U 1-1 onto e E | U e
4 f1ofo f : G NeighbVtx U 1-1 onto e E | U e f : G NeighbVtx U onto e E | U e
5 fofi G NeighbVtx U Fin f : G NeighbVtx U onto e E | U e e E | U e Fin
6 5 expcom f : G NeighbVtx U onto e E | U e G NeighbVtx U Fin e E | U e Fin
7 4 6 syl f : G NeighbVtx U 1-1 onto e E | U e G NeighbVtx U Fin e E | U e Fin
8 7 exlimiv f f : G NeighbVtx U 1-1 onto e E | U e G NeighbVtx U Fin e E | U e Fin
9 3 8 syl G USGraph U V G NeighbVtx U Fin e E | U e Fin
10 f1of1 f : G NeighbVtx U 1-1 onto e E | U e f : G NeighbVtx U 1-1 e E | U e
11 f1fi e E | U e Fin f : G NeighbVtx U 1-1 e E | U e G NeighbVtx U Fin
12 11 expcom f : G NeighbVtx U 1-1 e E | U e e E | U e Fin G NeighbVtx U Fin
13 10 12 syl f : G NeighbVtx U 1-1 onto e E | U e e E | U e Fin G NeighbVtx U Fin
14 13 exlimiv f f : G NeighbVtx U 1-1 onto e E | U e e E | U e Fin G NeighbVtx U Fin
15 3 14 syl G USGraph U V e E | U e Fin G NeighbVtx U Fin
16 9 15 impbid G USGraph U V G NeighbVtx U Fin e E | U e Fin