Metamath Proof Explorer


Theorem edgval

Description: The edges of a graph. (Contributed by AV, 1-Jan-2020) (Revised by AV, 13-Oct-2020) (Revised by AV, 8-Dec-2021)

Ref Expression
Assertion edgval EdgG=raniEdgG

Proof

Step Hyp Ref Expression
1 fveq2 g=GiEdgg=iEdgG
2 1 rneqd g=GraniEdgg=raniEdgG
3 df-edg Edg=gVraniEdgg
4 fvex iEdgGV
5 4 rnex raniEdgGV
6 2 3 5 fvmpt GVEdgG=raniEdgG
7 rn0 ran=
8 7 a1i ¬GVran=
9 fvprc ¬GViEdgG=
10 9 rneqd ¬GVraniEdgG=ran
11 fvprc ¬GVEdgG=
12 8 10 11 3eqtr4rd ¬GVEdgG=raniEdgG
13 6 12 pm2.61i EdgG=raniEdgG