Metamath Proof Explorer


Theorem ee03an

Description: Conjunction form of ee03 . (Contributed by Alan Sare, 18-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee03an.1 φ
ee03an.2 ψχθτ
ee03an.3 φτη
Assertion ee03an ψχθη

Proof

Step Hyp Ref Expression
1 ee03an.1 φ
2 ee03an.2 ψχθτ
3 ee03an.3 φτη
4 3 ex φτη
5 1 2 4 ee03 ψχθη