Metamath Proof Explorer
		
		
		
		Description:  An elimination deduction.  (Contributed by Alan Sare, 4-Feb-2017)
       (Proof modification is discouraged.)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | eelT01.1 |  | 
					
						|  |  | eelT01.2 |  | 
					
						|  |  | eelT01.3 |  | 
					
						|  |  | eelT01.4 |  | 
				
					|  | Assertion | eelT01 |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eelT01.1 |  | 
						
							| 2 |  | eelT01.2 |  | 
						
							| 3 |  | eelT01.3 |  | 
						
							| 4 |  | eelT01.4 |  | 
						
							| 5 |  | 3anass |  | 
						
							| 6 |  | truan |  | 
						
							| 7 |  | simpr |  | 
						
							| 8 | 2 | jctl |  | 
						
							| 9 | 7 8 | impbii |  | 
						
							| 10 | 5 6 9 | 3bitri |  | 
						
							| 11 | 1 4 | syl3an1 |  | 
						
							| 12 | 3 11 | syl3an3 |  | 
						
							| 13 | 10 12 | sylbir |  |