| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eelT01.1 |  |-  ( T. -> ph ) | 
						
							| 2 |  | eelT01.2 |  |-  ps | 
						
							| 3 |  | eelT01.3 |  |-  ( ch -> th ) | 
						
							| 4 |  | eelT01.4 |  |-  ( ( ph /\ ps /\ th ) -> ta ) | 
						
							| 5 |  | 3anass |  |-  ( ( T. /\ ps /\ ch ) <-> ( T. /\ ( ps /\ ch ) ) ) | 
						
							| 6 |  | truan |  |-  ( ( T. /\ ( ps /\ ch ) ) <-> ( ps /\ ch ) ) | 
						
							| 7 |  | simpr |  |-  ( ( ps /\ ch ) -> ch ) | 
						
							| 8 | 2 | jctl |  |-  ( ch -> ( ps /\ ch ) ) | 
						
							| 9 | 7 8 | impbii |  |-  ( ( ps /\ ch ) <-> ch ) | 
						
							| 10 | 5 6 9 | 3bitri |  |-  ( ( T. /\ ps /\ ch ) <-> ch ) | 
						
							| 11 | 1 4 | syl3an1 |  |-  ( ( T. /\ ps /\ th ) -> ta ) | 
						
							| 12 | 3 11 | syl3an3 |  |-  ( ( T. /\ ps /\ ch ) -> ta ) | 
						
							| 13 | 10 12 | sylbir |  |-  ( ch -> ta ) |