Metamath Proof Explorer
		
		
		
		Description:  An elimination deduction.  (Contributed by Alan Sare, 4-Feb-2017)
       (Proof modification is discouraged.)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | eelT01.1 | ⊢ ( ⊤  →  𝜑 ) | 
					
						|  |  | eelT01.2 | ⊢ 𝜓 | 
					
						|  |  | eelT01.3 | ⊢ ( 𝜒  →  𝜃 ) | 
					
						|  |  | eelT01.4 | ⊢ ( ( 𝜑  ∧  𝜓  ∧  𝜃 )  →  𝜏 ) | 
				
					|  | Assertion | eelT01 | ⊢  ( 𝜒  →  𝜏 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eelT01.1 | ⊢ ( ⊤  →  𝜑 ) | 
						
							| 2 |  | eelT01.2 | ⊢ 𝜓 | 
						
							| 3 |  | eelT01.3 | ⊢ ( 𝜒  →  𝜃 ) | 
						
							| 4 |  | eelT01.4 | ⊢ ( ( 𝜑  ∧  𝜓  ∧  𝜃 )  →  𝜏 ) | 
						
							| 5 |  | 3anass | ⊢ ( ( ⊤  ∧  𝜓  ∧  𝜒 )  ↔  ( ⊤  ∧  ( 𝜓  ∧  𝜒 ) ) ) | 
						
							| 6 |  | truan | ⊢ ( ( ⊤  ∧  ( 𝜓  ∧  𝜒 ) )  ↔  ( 𝜓  ∧  𝜒 ) ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝜓  ∧  𝜒 )  →  𝜒 ) | 
						
							| 8 | 2 | jctl | ⊢ ( 𝜒  →  ( 𝜓  ∧  𝜒 ) ) | 
						
							| 9 | 7 8 | impbii | ⊢ ( ( 𝜓  ∧  𝜒 )  ↔  𝜒 ) | 
						
							| 10 | 5 6 9 | 3bitri | ⊢ ( ( ⊤  ∧  𝜓  ∧  𝜒 )  ↔  𝜒 ) | 
						
							| 11 | 1 4 | syl3an1 | ⊢ ( ( ⊤  ∧  𝜓  ∧  𝜃 )  →  𝜏 ) | 
						
							| 12 | 3 11 | syl3an3 | ⊢ ( ( ⊤  ∧  𝜓  ∧  𝜒 )  →  𝜏 ) | 
						
							| 13 | 10 12 | sylbir | ⊢ ( 𝜒  →  𝜏 ) |