| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eel0T1.1 |  |-  ph | 
						
							| 2 |  | eel0T1.2 |  |-  ( T. -> ps ) | 
						
							| 3 |  | eel0T1.3 |  |-  ( ch -> th ) | 
						
							| 4 |  | eel0T1.4 |  |-  ( ( ph /\ ps /\ th ) -> ta ) | 
						
							| 5 |  | 3anass |  |-  ( ( ph /\ T. /\ ch ) <-> ( ph /\ ( T. /\ ch ) ) ) | 
						
							| 6 |  | simpr |  |-  ( ( ph /\ ( T. /\ ch ) ) -> ( T. /\ ch ) ) | 
						
							| 7 | 1 | jctl |  |-  ( ( T. /\ ch ) -> ( ph /\ ( T. /\ ch ) ) ) | 
						
							| 8 | 6 7 | impbii |  |-  ( ( ph /\ ( T. /\ ch ) ) <-> ( T. /\ ch ) ) | 
						
							| 9 |  | truan |  |-  ( ( T. /\ ch ) <-> ch ) | 
						
							| 10 | 5 8 9 | 3bitri |  |-  ( ( ph /\ T. /\ ch ) <-> ch ) | 
						
							| 11 | 2 4 | syl3an2 |  |-  ( ( ph /\ T. /\ th ) -> ta ) | 
						
							| 12 | 3 11 | syl3an3 |  |-  ( ( ph /\ T. /\ ch ) -> ta ) | 
						
							| 13 | 10 12 | sylbir |  |-  ( ch -> ta ) |