Metamath Proof Explorer


Theorem efgi1

Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
Assertion efgi1 AWN0AJIA˙AspliceNN⟨“J1𝑜J”⟩

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 1oex 1𝑜V
4 3 prid2 1𝑜1𝑜
5 df2o3 2𝑜=1𝑜
6 4 5 eleqtrri 1𝑜2𝑜
7 1 2 efgi AWN0AJI1𝑜2𝑜A˙AspliceNN⟨“J1𝑜J1𝑜1𝑜”⟩
8 6 7 mpanr2 AWN0AJIA˙AspliceNN⟨“J1𝑜J1𝑜1𝑜”⟩
9 8 3impa AWN0AJIA˙AspliceNN⟨“J1𝑜J1𝑜1𝑜”⟩
10 tru
11 eqidd J1𝑜=J1𝑜
12 difid 1𝑜1𝑜=
13 12 opeq2i J1𝑜1𝑜=J
14 13 a1i J1𝑜1𝑜=J
15 11 14 s2eqd ⟨“J1𝑜J1𝑜1𝑜”⟩=⟨“J1𝑜J”⟩
16 oteq3 ⟨“J1𝑜J1𝑜1𝑜”⟩=⟨“J1𝑜J”⟩NN⟨“J1𝑜J1𝑜1𝑜”⟩=NN⟨“J1𝑜J”⟩
17 10 15 16 mp2b NN⟨“J1𝑜J1𝑜1𝑜”⟩=NN⟨“J1𝑜J”⟩
18 17 oveq2i AspliceNN⟨“J1𝑜J1𝑜1𝑜”⟩=AspliceNN⟨“J1𝑜J”⟩
19 9 18 breqtrdi AWN0AJIA˙AspliceNN⟨“J1𝑜J”⟩