Metamath Proof Explorer


Theorem efgi

Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
Assertion efgi AWN0AJIK2𝑜A˙AspliceNN⟨“JKJ1𝑜K”⟩

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 fveq2 u=Au=A
4 3 oveq2d u=A0u=0A
5 id u=Au=A
6 oveq1 u=Auspliceii⟨“aba1𝑜b”⟩=Aspliceii⟨“aba1𝑜b”⟩
7 5 6 breq12d u=Auruspliceii⟨“aba1𝑜b”⟩ArAspliceii⟨“aba1𝑜b”⟩
8 7 2ralbidv u=AaIb2𝑜uruspliceii⟨“aba1𝑜b”⟩aIb2𝑜ArAspliceii⟨“aba1𝑜b”⟩
9 4 8 raleqbidv u=Ai0uaIb2𝑜uruspliceii⟨“aba1𝑜b”⟩i0AaIb2𝑜ArAspliceii⟨“aba1𝑜b”⟩
10 9 rspcv AWuWi0uaIb2𝑜uruspliceii⟨“aba1𝑜b”⟩i0AaIb2𝑜ArAspliceii⟨“aba1𝑜b”⟩
11 oteq1 i=Nii⟨“aba1𝑜b”⟩=Ni⟨“aba1𝑜b”⟩
12 oteq2 i=NNi⟨“aba1𝑜b”⟩=NN⟨“aba1𝑜b”⟩
13 11 12 eqtrd i=Nii⟨“aba1𝑜b”⟩=NN⟨“aba1𝑜b”⟩
14 13 oveq2d i=NAspliceii⟨“aba1𝑜b”⟩=AspliceNN⟨“aba1𝑜b”⟩
15 14 breq2d i=NArAspliceii⟨“aba1𝑜b”⟩ArAspliceNN⟨“aba1𝑜b”⟩
16 15 2ralbidv i=NaIb2𝑜ArAspliceii⟨“aba1𝑜b”⟩aIb2𝑜ArAspliceNN⟨“aba1𝑜b”⟩
17 16 rspcv N0Ai0AaIb2𝑜ArAspliceii⟨“aba1𝑜b”⟩aIb2𝑜ArAspliceNN⟨“aba1𝑜b”⟩
18 10 17 sylan9 AWN0AuWi0uaIb2𝑜uruspliceii⟨“aba1𝑜b”⟩aIb2𝑜ArAspliceNN⟨“aba1𝑜b”⟩
19 opeq1 a=Jab=Jb
20 opeq1 a=Ja1𝑜b=J1𝑜b
21 19 20 s2eqd a=J⟨“aba1𝑜b”⟩=⟨“JbJ1𝑜b”⟩
22 21 oteq3d a=JNN⟨“aba1𝑜b”⟩=NN⟨“JbJ1𝑜b”⟩
23 22 oveq2d a=JAspliceNN⟨“aba1𝑜b”⟩=AspliceNN⟨“JbJ1𝑜b”⟩
24 23 breq2d a=JArAspliceNN⟨“aba1𝑜b”⟩ArAspliceNN⟨“JbJ1𝑜b”⟩
25 opeq2 b=KJb=JK
26 difeq2 b=K1𝑜b=1𝑜K
27 26 opeq2d b=KJ1𝑜b=J1𝑜K
28 25 27 s2eqd b=K⟨“JbJ1𝑜b”⟩=⟨“JKJ1𝑜K”⟩
29 28 oteq3d b=KNN⟨“JbJ1𝑜b”⟩=NN⟨“JKJ1𝑜K”⟩
30 29 oveq2d b=KAspliceNN⟨“JbJ1𝑜b”⟩=AspliceNN⟨“JKJ1𝑜K”⟩
31 30 breq2d b=KArAspliceNN⟨“JbJ1𝑜b”⟩ArAspliceNN⟨“JKJ1𝑜K”⟩
32 df-br ArAspliceNN⟨“JKJ1𝑜K”⟩AAspliceNN⟨“JKJ1𝑜K”⟩r
33 31 32 bitrdi b=KArAspliceNN⟨“JbJ1𝑜b”⟩AAspliceNN⟨“JKJ1𝑜K”⟩r
34 24 33 rspc2v JIK2𝑜aIb2𝑜ArAspliceNN⟨“aba1𝑜b”⟩AAspliceNN⟨“JKJ1𝑜K”⟩r
35 18 34 sylan9 AWN0AJIK2𝑜uWi0uaIb2𝑜uruspliceii⟨“aba1𝑜b”⟩AAspliceNN⟨“JKJ1𝑜K”⟩r
36 35 adantld AWN0AJIK2𝑜rErWuWi0uaIb2𝑜uruspliceii⟨“aba1𝑜b”⟩AAspliceNN⟨“JKJ1𝑜K”⟩r
37 36 alrimiv AWN0AJIK2𝑜rrErWuWi0uaIb2𝑜uruspliceii⟨“aba1𝑜b”⟩AAspliceNN⟨“JKJ1𝑜K”⟩r
38 opex AAspliceNN⟨“JKJ1𝑜K”⟩V
39 38 elintab AAspliceNN⟨“JKJ1𝑜K”⟩r|rErWuWi0uaIb2𝑜uruspliceii⟨“aba1𝑜b”⟩rrErWuWi0uaIb2𝑜uruspliceii⟨“aba1𝑜b”⟩AAspliceNN⟨“JKJ1𝑜K”⟩r
40 37 39 sylibr AWN0AJIK2𝑜AAspliceNN⟨“JKJ1𝑜K”⟩r|rErWuWi0uaIb2𝑜uruspliceii⟨“aba1𝑜b”⟩
41 1 2 efgval ˙=r|rErWuWi0uaIb2𝑜uruspliceii⟨“aba1𝑜b”⟩
42 40 41 eleqtrrdi AWN0AJIK2𝑜AAspliceNN⟨“JKJ1𝑜K”⟩˙
43 df-br A˙AspliceNN⟨“JKJ1𝑜K”⟩AAspliceNN⟨“JKJ1𝑜K”⟩˙
44 42 43 sylibr AWN0AJIK2𝑜A˙AspliceNN⟨“JKJ1𝑜K”⟩