Metamath Proof Explorer


Theorem efgi0

Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015) (Revised by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
Assertion efgi0 AWN0AJIA˙AspliceNN⟨“JJ1𝑜”⟩

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 0ex V
4 3 prid1 1𝑜
5 df2o3 2𝑜=1𝑜
6 4 5 eleqtrri 2𝑜
7 1 2 efgi AWN0AJI2𝑜A˙AspliceNN⟨“JJ1𝑜”⟩
8 6 7 mpanr2 AWN0AJIA˙AspliceNN⟨“JJ1𝑜”⟩
9 8 3impa AWN0AJIA˙AspliceNN⟨“JJ1𝑜”⟩
10 tru
11 eqidd J=J
12 dif0 1𝑜=1𝑜
13 12 opeq2i J1𝑜=J1𝑜
14 13 a1i J1𝑜=J1𝑜
15 11 14 s2eqd ⟨“JJ1𝑜”⟩=⟨“JJ1𝑜”⟩
16 oteq3 ⟨“JJ1𝑜”⟩=⟨“JJ1𝑜”⟩NN⟨“JJ1𝑜”⟩=NN⟨“JJ1𝑜”⟩
17 10 15 16 mp2b NN⟨“JJ1𝑜”⟩=NN⟨“JJ1𝑜”⟩
18 17 oveq2i AspliceNN⟨“JJ1𝑜”⟩=AspliceNN⟨“JJ1𝑜”⟩
19 9 18 breqtrdi AWN0AJIA˙AspliceNN⟨“JJ1𝑜”⟩