Metamath Proof Explorer


Theorem efgtf

Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypotheses efgval.w W = I Word I × 2 𝑜
efgval.r ˙ = ~ FG I
efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
Assertion efgtf X W T X = a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ T X : 0 X × I × 2 𝑜 W

Proof

Step Hyp Ref Expression
1 efgval.w W = I Word I × 2 𝑜
2 efgval.r ˙ = ~ FG I
3 efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
4 efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
5 fviss I Word I × 2 𝑜 Word I × 2 𝑜
6 1 5 eqsstri W Word I × 2 𝑜
7 simpl X W a 0 X b I × 2 𝑜 X W
8 6 7 sseldi X W a 0 X b I × 2 𝑜 X Word I × 2 𝑜
9 simprr X W a 0 X b I × 2 𝑜 b I × 2 𝑜
10 3 efgmf M : I × 2 𝑜 I × 2 𝑜
11 10 ffvelrni b I × 2 𝑜 M b I × 2 𝑜
12 11 ad2antll X W a 0 X b I × 2 𝑜 M b I × 2 𝑜
13 9 12 s2cld X W a 0 X b I × 2 𝑜 ⟨“ b M b ”⟩ Word I × 2 𝑜
14 splcl X Word I × 2 𝑜 ⟨“ b M b ”⟩ Word I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ Word I × 2 𝑜
15 8 13 14 syl2anc X W a 0 X b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ Word I × 2 𝑜
16 1 efgrcl X W I V W = Word I × 2 𝑜
17 16 simprd X W W = Word I × 2 𝑜
18 17 adantr X W a 0 X b I × 2 𝑜 W = Word I × 2 𝑜
19 15 18 eleqtrrd X W a 0 X b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ W
20 19 ralrimivva X W a 0 X b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ W
21 eqid a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ = a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩
22 21 fmpo a 0 X b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ W a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ : 0 X × I × 2 𝑜 W
23 20 22 sylib X W a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ : 0 X × I × 2 𝑜 W
24 ovex 0 X V
25 16 simpld X W I V
26 2on 2 𝑜 On
27 xpexg I V 2 𝑜 On I × 2 𝑜 V
28 25 26 27 sylancl X W I × 2 𝑜 V
29 xpexg 0 X V I × 2 𝑜 V 0 X × I × 2 𝑜 V
30 24 28 29 sylancr X W 0 X × I × 2 𝑜 V
31 1 fvexi W V
32 31 a1i X W W V
33 fex2 a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ : 0 X × I × 2 𝑜 W 0 X × I × 2 𝑜 V W V a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ V
34 23 30 32 33 syl3anc X W a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ V
35 fveq2 u = X u = X
36 35 oveq2d u = X 0 u = 0 X
37 eqidd u = X I × 2 𝑜 = I × 2 𝑜
38 oveq1 u = X u splice a a ⟨“ b M b ”⟩ = X splice a a ⟨“ b M b ”⟩
39 36 37 38 mpoeq123dv u = X a 0 u , b I × 2 𝑜 u splice a a ⟨“ b M b ”⟩ = a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩
40 oteq1 n = a n n ⟨“ w M w ”⟩ = a n ⟨“ w M w ”⟩
41 oteq2 n = a a n ⟨“ w M w ”⟩ = a a ⟨“ w M w ”⟩
42 40 41 eqtrd n = a n n ⟨“ w M w ”⟩ = a a ⟨“ w M w ”⟩
43 42 oveq2d n = a v splice n n ⟨“ w M w ”⟩ = v splice a a ⟨“ w M w ”⟩
44 id w = b w = b
45 fveq2 w = b M w = M b
46 44 45 s2eqd w = b ⟨“ w M w ”⟩ = ⟨“ b M b ”⟩
47 46 oteq3d w = b a a ⟨“ w M w ”⟩ = a a ⟨“ b M b ”⟩
48 47 oveq2d w = b v splice a a ⟨“ w M w ”⟩ = v splice a a ⟨“ b M b ”⟩
49 43 48 cbvmpov n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩ = a 0 v , b I × 2 𝑜 v splice a a ⟨“ b M b ”⟩
50 fveq2 v = u v = u
51 50 oveq2d v = u 0 v = 0 u
52 eqidd v = u I × 2 𝑜 = I × 2 𝑜
53 oveq1 v = u v splice a a ⟨“ b M b ”⟩ = u splice a a ⟨“ b M b ”⟩
54 51 52 53 mpoeq123dv v = u a 0 v , b I × 2 𝑜 v splice a a ⟨“ b M b ”⟩ = a 0 u , b I × 2 𝑜 u splice a a ⟨“ b M b ”⟩
55 49 54 syl5eq v = u n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩ = a 0 u , b I × 2 𝑜 u splice a a ⟨“ b M b ”⟩
56 55 cbvmptv v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩ = u W a 0 u , b I × 2 𝑜 u splice a a ⟨“ b M b ”⟩
57 4 56 eqtri T = u W a 0 u , b I × 2 𝑜 u splice a a ⟨“ b M b ”⟩
58 39 57 fvmptg X W a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ V T X = a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩
59 34 58 mpdan X W T X = a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩
60 59 feq1d X W T X : 0 X × I × 2 𝑜 W a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ : 0 X × I × 2 𝑜 W
61 23 60 mpbird X W T X : 0 X × I × 2 𝑜 W
62 59 61 jca X W T X = a 0 X , b I × 2 𝑜 X splice a a ⟨“ b M b ”⟩ T X : 0 X × I × 2 𝑜 W