Metamath Proof Explorer


Theorem efgtval

Description: Value of the extension function, which maps a word (a representation of the group element as a sequence of elements and their inverses) to its direct extensions, defined as the original representation with an element and its inverse inserted somewhere in the string. (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
Assertion efgtval XWN0XAI×2𝑜NTXA=XspliceNN⟨“AMA”⟩

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 1 2 3 4 efgtf XWTX=a0X,bI×2𝑜Xspliceaa⟨“bMb”⟩TX:0X×I×2𝑜W
6 5 simpld XWTX=a0X,bI×2𝑜Xspliceaa⟨“bMb”⟩
7 6 oveqd XWNTXA=Na0X,bI×2𝑜Xspliceaa⟨“bMb”⟩A
8 oteq1 a=Naa⟨“bMb”⟩=Na⟨“bMb”⟩
9 oteq2 a=NNa⟨“bMb”⟩=NN⟨“bMb”⟩
10 8 9 eqtrd a=Naa⟨“bMb”⟩=NN⟨“bMb”⟩
11 10 oveq2d a=NXspliceaa⟨“bMb”⟩=XspliceNN⟨“bMb”⟩
12 id b=Ab=A
13 fveq2 b=AMb=MA
14 12 13 s2eqd b=A⟨“bMb”⟩=⟨“AMA”⟩
15 14 oteq3d b=ANN⟨“bMb”⟩=NN⟨“AMA”⟩
16 15 oveq2d b=AXspliceNN⟨“bMb”⟩=XspliceNN⟨“AMA”⟩
17 eqid a0X,bI×2𝑜Xspliceaa⟨“bMb”⟩=a0X,bI×2𝑜Xspliceaa⟨“bMb”⟩
18 ovex XspliceNN⟨“AMA”⟩V
19 11 16 17 18 ovmpo N0XAI×2𝑜Na0X,bI×2𝑜Xspliceaa⟨“bMb”⟩A=XspliceNN⟨“AMA”⟩
20 7 19 sylan9eq XWN0XAI×2𝑜NTXA=XspliceNN⟨“AMA”⟩
21 20 3impb XWN0XAI×2𝑜NTXA=XspliceNN⟨“AMA”⟩