Metamath Proof Explorer


Theorem efgval2

Description: Value of the free group construction. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
Assertion efgval2 ˙=r|rErWxWranTxxr

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 1 2 efgval ˙=r|rErWxWm0xaIb2𝑜xrxsplicemm⟨“aba1𝑜b”⟩
6 1 2 3 4 efgtf xWTx=m0x,uI×2𝑜xsplicemm⟨“uMu”⟩Tx:0x×I×2𝑜W
7 6 simpld xWTx=m0x,uI×2𝑜xsplicemm⟨“uMu”⟩
8 7 rneqd xWranTx=ranm0x,uI×2𝑜xsplicemm⟨“uMu”⟩
9 8 sseq1d xWranTxxrranm0x,uI×2𝑜xsplicemm⟨“uMu”⟩xr
10 dfss3 ranm0x,uI×2𝑜xsplicemm⟨“uMu”⟩xraranm0x,uI×2𝑜xsplicemm⟨“uMu”⟩axr
11 ovex xsplicemm⟨“uMu”⟩V
12 11 rgen2w m0xuI×2𝑜xsplicemm⟨“uMu”⟩V
13 eqid m0x,uI×2𝑜xsplicemm⟨“uMu”⟩=m0x,uI×2𝑜xsplicemm⟨“uMu”⟩
14 vex aV
15 vex xV
16 14 15 elec axrxra
17 breq2 a=xsplicemm⟨“uMu”⟩xraxrxsplicemm⟨“uMu”⟩
18 16 17 bitrid a=xsplicemm⟨“uMu”⟩axrxrxsplicemm⟨“uMu”⟩
19 13 18 ralrnmpo m0xuI×2𝑜xsplicemm⟨“uMu”⟩Varanm0x,uI×2𝑜xsplicemm⟨“uMu”⟩axrm0xuI×2𝑜xrxsplicemm⟨“uMu”⟩
20 12 19 ax-mp aranm0x,uI×2𝑜xsplicemm⟨“uMu”⟩axrm0xuI×2𝑜xrxsplicemm⟨“uMu”⟩
21 id u=abu=ab
22 fveq2 u=abMu=Mab
23 df-ov aMb=Mab
24 22 23 eqtr4di u=abMu=aMb
25 21 24 s2eqd u=ab⟨“uMu”⟩=⟨“abaMb”⟩
26 25 oteq3d u=abmm⟨“uMu”⟩=mm⟨“abaMb”⟩
27 26 oveq2d u=abxsplicemm⟨“uMu”⟩=xsplicemm⟨“abaMb”⟩
28 27 breq2d u=abxrxsplicemm⟨“uMu”⟩xrxsplicemm⟨“abaMb”⟩
29 28 ralxp uI×2𝑜xrxsplicemm⟨“uMu”⟩aIb2𝑜xrxsplicemm⟨“abaMb”⟩
30 eqidd aIb2𝑜ab=ab
31 3 efgmval aIb2𝑜aMb=a1𝑜b
32 30 31 s2eqd aIb2𝑜⟨“abaMb”⟩=⟨“aba1𝑜b”⟩
33 32 oteq3d aIb2𝑜mm⟨“abaMb”⟩=mm⟨“aba1𝑜b”⟩
34 33 oveq2d aIb2𝑜xsplicemm⟨“abaMb”⟩=xsplicemm⟨“aba1𝑜b”⟩
35 34 breq2d aIb2𝑜xrxsplicemm⟨“abaMb”⟩xrxsplicemm⟨“aba1𝑜b”⟩
36 35 ralbidva aIb2𝑜xrxsplicemm⟨“abaMb”⟩b2𝑜xrxsplicemm⟨“aba1𝑜b”⟩
37 36 ralbiia aIb2𝑜xrxsplicemm⟨“abaMb”⟩aIb2𝑜xrxsplicemm⟨“aba1𝑜b”⟩
38 29 37 bitri uI×2𝑜xrxsplicemm⟨“uMu”⟩aIb2𝑜xrxsplicemm⟨“aba1𝑜b”⟩
39 38 ralbii m0xuI×2𝑜xrxsplicemm⟨“uMu”⟩m0xaIb2𝑜xrxsplicemm⟨“aba1𝑜b”⟩
40 20 39 bitri aranm0x,uI×2𝑜xsplicemm⟨“uMu”⟩axrm0xaIb2𝑜xrxsplicemm⟨“aba1𝑜b”⟩
41 10 40 bitri ranm0x,uI×2𝑜xsplicemm⟨“uMu”⟩xrm0xaIb2𝑜xrxsplicemm⟨“aba1𝑜b”⟩
42 9 41 bitrdi xWranTxxrm0xaIb2𝑜xrxsplicemm⟨“aba1𝑜b”⟩
43 42 ralbiia xWranTxxrxWm0xaIb2𝑜xrxsplicemm⟨“aba1𝑜b”⟩
44 43 anbi2i rErWxWranTxxrrErWxWm0xaIb2𝑜xrxsplicemm⟨“aba1𝑜b”⟩
45 44 abbii r|rErWxWranTxxr=r|rErWxWm0xaIb2𝑜xrxsplicemm⟨“aba1𝑜b”⟩
46 45 inteqi r|rErWxWranTxxr=r|rErWxWm0xaIb2𝑜xrxsplicemm⟨“aba1𝑜b”⟩
47 5 46 eqtr4i ˙=r|rErWxWranTxxr