Metamath Proof Explorer


Theorem efgrcl

Description: Lemma for efgval . (Contributed by Mario Carneiro, 1-Oct-2015) (Revised by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypothesis efgval.w W=IWordI×2𝑜
Assertion efgrcl AWIVW=WordI×2𝑜

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 2on0 2𝑜
3 dmxp 2𝑜domI×2𝑜=I
4 2 3 ax-mp domI×2𝑜=I
5 elfvex AIWordI×2𝑜WordI×2𝑜V
6 5 1 eleq2s AWWordI×2𝑜V
7 wrdexb I×2𝑜VWordI×2𝑜V
8 6 7 sylibr AWI×2𝑜V
9 8 dmexd AWdomI×2𝑜V
10 4 9 eqeltrrid AWIV
11 fvi WordI×2𝑜VIWordI×2𝑜=WordI×2𝑜
12 6 11 syl AWIWordI×2𝑜=WordI×2𝑜
13 1 12 eqtrid AWW=WordI×2𝑜
14 10 13 jca AWIVW=WordI×2𝑜