| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efgval.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
| 2 |
|
2on0 |
|- 2o =/= (/) |
| 3 |
|
dmxp |
|- ( 2o =/= (/) -> dom ( I X. 2o ) = I ) |
| 4 |
2 3
|
ax-mp |
|- dom ( I X. 2o ) = I |
| 5 |
|
elfvex |
|- ( A e. ( _I ` Word ( I X. 2o ) ) -> Word ( I X. 2o ) e. _V ) |
| 6 |
5 1
|
eleq2s |
|- ( A e. W -> Word ( I X. 2o ) e. _V ) |
| 7 |
|
wrdexb |
|- ( ( I X. 2o ) e. _V <-> Word ( I X. 2o ) e. _V ) |
| 8 |
6 7
|
sylibr |
|- ( A e. W -> ( I X. 2o ) e. _V ) |
| 9 |
8
|
dmexd |
|- ( A e. W -> dom ( I X. 2o ) e. _V ) |
| 10 |
4 9
|
eqeltrrid |
|- ( A e. W -> I e. _V ) |
| 11 |
|
fvi |
|- ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
| 12 |
6 11
|
syl |
|- ( A e. W -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
| 13 |
1 12
|
eqtrid |
|- ( A e. W -> W = Word ( I X. 2o ) ) |
| 14 |
10 13
|
jca |
|- ( A e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |