Metamath Proof Explorer


Theorem efglem

Description: Lemma for efgval . (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypothesis efgval.w W=IWordI×2𝑜
Assertion efglem rrErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 xpider W×WErW
3 simpll xWn0xyIz2𝑜xW
4 fviss IWordI×2𝑜WordI×2𝑜
5 1 4 eqsstri WWordI×2𝑜
6 5 3 sselid xWn0xyIz2𝑜xWordI×2𝑜
7 opelxpi yIz2𝑜yzI×2𝑜
8 7 adantl xWn0xyIz2𝑜yzI×2𝑜
9 2oconcl z2𝑜1𝑜z2𝑜
10 opelxpi yI1𝑜z2𝑜y1𝑜zI×2𝑜
11 9 10 sylan2 yIz2𝑜y1𝑜zI×2𝑜
12 11 adantl xWn0xyIz2𝑜y1𝑜zI×2𝑜
13 8 12 s2cld xWn0xyIz2𝑜⟨“yzy1𝑜z”⟩WordI×2𝑜
14 splcl xWordI×2𝑜⟨“yzy1𝑜z”⟩WordI×2𝑜xsplicenn⟨“yzy1𝑜z”⟩WordI×2𝑜
15 6 13 14 syl2anc xWn0xyIz2𝑜xsplicenn⟨“yzy1𝑜z”⟩WordI×2𝑜
16 1 efgrcl xWIVW=WordI×2𝑜
17 16 simprd xWW=WordI×2𝑜
18 17 ad2antrr xWn0xyIz2𝑜W=WordI×2𝑜
19 15 18 eleqtrrd xWn0xyIz2𝑜xsplicenn⟨“yzy1𝑜z”⟩W
20 brxp xW×Wxsplicenn⟨“yzy1𝑜z”⟩xWxsplicenn⟨“yzy1𝑜z”⟩W
21 3 19 20 sylanbrc xWn0xyIz2𝑜xW×Wxsplicenn⟨“yzy1𝑜z”⟩
22 21 ralrimivva xWn0xyIz2𝑜xW×Wxsplicenn⟨“yzy1𝑜z”⟩
23 22 rgen2 xWn0xyIz2𝑜xW×Wxsplicenn⟨“yzy1𝑜z”⟩
24 1 fvexi WV
25 24 24 xpex W×WV
26 ereq1 r=W×WrErWW×WErW
27 breq r=W×Wxrxsplicenn⟨“yzy1𝑜z”⟩xW×Wxsplicenn⟨“yzy1𝑜z”⟩
28 27 2ralbidv r=W×WyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩yIz2𝑜xW×Wxsplicenn⟨“yzy1𝑜z”⟩
29 28 2ralbidv r=W×WxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩xWn0xyIz2𝑜xW×Wxsplicenn⟨“yzy1𝑜z”⟩
30 26 29 anbi12d r=W×WrErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩W×WErWxWn0xyIz2𝑜xW×Wxsplicenn⟨“yzy1𝑜z”⟩
31 25 30 spcev W×WErWxWn0xyIz2𝑜xW×Wxsplicenn⟨“yzy1𝑜z”⟩rrErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩
32 2 23 31 mp2an rrErWxWn0xyIz2𝑜xrxsplicenn⟨“yzy1𝑜z”⟩