Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995) (Revised by Mario Carneiro, 12-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ereq1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releq | |
|
2 | dmeq | |
|
3 | 2 | eqeq1d | |
4 | cnveq | |
|
5 | coeq1 | |
|
6 | coeq2 | |
|
7 | 5 6 | eqtrd | |
8 | 4 7 | uneq12d | |
9 | 8 | sseq1d | |
10 | sseq2 | |
|
11 | 9 10 | bitrd | |
12 | 1 3 11 | 3anbi123d | |
13 | df-er | |
|
14 | df-er | |
|
15 | 12 13 14 | 3bitr4g | |