Metamath Proof Explorer


Theorem ereq1

Description: Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Assertion ereq1 R=SRErASErA

Proof

Step Hyp Ref Expression
1 releq R=SRelRRelS
2 dmeq R=SdomR=domS
3 2 eqeq1d R=SdomR=AdomS=A
4 cnveq R=SR-1=S-1
5 coeq1 R=SRR=SR
6 coeq2 R=SSR=SS
7 5 6 eqtrd R=SRR=SS
8 4 7 uneq12d R=SR-1RR=S-1SS
9 8 sseq1d R=SR-1RRRS-1SSR
10 sseq2 R=SS-1SSRS-1SSS
11 9 10 bitrd R=SR-1RRRS-1SSS
12 1 3 11 3anbi123d R=SRelRdomR=AR-1RRRRelSdomS=AS-1SSS
13 df-er RErARelRdomR=AR-1RRR
14 df-er SErARelSdomS=AS-1SSS
15 12 13 14 3bitr4g R=SRErASErA